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Abstract

Hyperdimensional computing (HDC) is an approach from the
cognitive science literature for solving information process-
ing tasks using data represented as high-dimensional random
vectors. The technique has a rigorous mathematical back-
ing, and is easy to implement in energy-efficient and highly
parallel hardware like FPGAs and “processing-in-memory”
architectures. The effectiveness of HDC in machine learn-
ing largely depends on how raw data is mapped to high-
dimensional space. In this work, we propose NysHD, a new
method for constructing this mapping that is based on the
Nystrom method from the literature on kernel approxima-
tion. Our approach provides a simple recipe to turn any
user-defined positive-semidefinite similarity function into an
equivalent mapping in HDC. There is a vast literature on the
design of such functions for learning problems. Our approach
provides a mechanism to import them into the HDC setting,
expanding the types of problems that can be tackled using
HDC. Empirical evaluation against existing HDC encoding
methods shows that NysHD can achieve, on average, 11%
and 17% better classification accuracy on graph and string
datasets respectively.

Code — https://github.com/QuanlingZhao/NysHD

Introduction

Biological brains “compute” using data representations that
are intrinsically fault-tolerant, suitable for highly-parallel
circuitry, and reveal complex structures in an environment
that are easy to learn (Hertz 2018). Motivated by these de-
sirable qualities, hyperdimensional computing (HDC) builds
on theories of representation from cognitive science (Kan-
erva 2009; Plate 1995) to develop novel hardware and algo-
rithms for information processing tasks. In HDC, all compu-
tation is performed using high-dimensional, low-precision,
vector representations of data. These representations can be
manipulated using simple, element-wise operators, so as to
implement learning algorithms or other information process-
ing tasks.

In contrast to deep learning models, training HDC-based
models can typically be done in a single pass over the
training data (Herndndez-Cano et al. 2021; Yu et al. 2022)
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and does not require back-propagation. The operations used
in HDC are lightweight and highly parallelizable, making
them suitable for implementation on low-energy and paral-
lel hardware platforms. This makes HDC an attractive al-
ternative for implementing learning in resource constrained
settings. As a result, HDC has gained significant interest in
recent years, especially in Internet of Things (IoT) (Khaleghi
et al. 2022; Zhao et al. 2022; Morris et al. 2021); and
in the computer hardware community (Dutta et al. 2022;
Kang et al. 2022a) such as FPGAs (Salamat et al. 2019),
GPUs (Kang et al. 2022b), ASICs (Zhang et al. 2023) and in-
memory computing (Dutta et al. 2022; Xu, Kang, and Ros-
ing 2023).

The first stage in any HDC task is encoding, which maps
data from its ambient representation z € X, into a repre-
sentation ¢(x) residing in a high-dimensional inner product
space H (Kleyko et al. 2023). HDC uses addition and mul-
tiplication (called ‘bundling” and “binding” in the HDC lit-
erature), to build representations of complex structures from
simple building blocks or to implement tasks like learning.
For instance, classification using HDC represents each class
as a sum of the encodings of its training data, called a “proto-
type.” Inference can then be performed by finding the closest
prototype to a query.

The crucial assumption underlying the success of this
technique is that “similar” points in X" are mapped to “sim-
ilar” regions of H. In practice, this desideratum typically
means that dot-products in H should be reflective of some
salient notion of similarity on &X'. In HDC, one typically
builds representations incrementally, by bundling and bind-
ing together the embeddings of simpler atoms. In this work,
we observe that one can also go in the opposite direction:
starting from a known similarity function of interest, it is
possible to generate an equivalent—up to some approxima-
tion factor—encoding function.

The advantage of this “top down” approach is that there
is a vast literature on designing good similarity functions for
different kinds of learning problems. In machine learning,
similarity functions that work by computing inner products
between high-dimensional embeddings of data are called
kernel functions, and are the basis of kernel methods, a
vast area of research in theoretical and applied ML (Shawe-
Taylor and Cristianini 2004; Smola and Scholkopf 1998).
This literature has devoted substantial attention to the prob-
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Figure 1: Overview of HDC training and inference for
classification tasks.

lem of designing good similarity functions, which are also
potentially applicable to the kinds of problems encountered
in HDC. In this work, we study an approach, based on the
Nystrom method from the literature on kernel approxima-
tion (Williams and Seeger 2000), which can take a user de-
fined kernel and generate an low-precision, randomized em-
bedding, suitable for use in the kinds of learning algorithms
employed in HDC. In a nutshell, the contributions of this
paper are as follows:

* We propose NysHD, a new way to generate embeddings
for HDC which can turn any user-defined kernel function
into an equivalent encodings.

* We analyze the kernel-preserving properties of NysHD
formally and show that the inner product between en-
coded samples preserves normalized kernel values.

e We perform an empirical evaluation against existing
HDC encoding methods and various neural network ar-
chitectures and show our method substantially improves
the performance of HDC-based learning, while preserv-
ing efficiency benefits relative to DNNs.

From a practical standpoint, our work has the potential to ex-
pand the scope of tasks that can be effectively addressed us-
ing HDC by allowing practitioners to access the large reper-
toire of kernels that have been designed for them (i.e. graph
kernels, string kernels etc.).

Background and Related Work
Learning With HDC

In this work, we focus on using HDC to solve classifi-
cation problems, which is a common practical application
of the technique (Imani et al. 2019; Rahimi et al. 2018;
Menon et al. 2022). Fig 1 demonstrates a typical HDC
learning workflow for classification (Morris et al. 2021;
Nunes et al. 2022; Miranda and d’ Aliberti 2022). Let D =
{(z1,y1), -, (Tn,Yn)} be a set of training data, where z; €
X is an input, and y; € {1,...,c} is a class label. The
first step is to embed the training data into a d-dimensional
inner product space ‘H under a map (called the encoding
function) ¢ : X — H. The “training” step then asso-
ciates each class with a vector in H, which is typically
formed by summing (bundling) the training data correspond-
ing to a particular class. Specifically, class j is represented as
0; = >0, a;j¢(x;) where a;j = 1(y; = j). In practice, 6;
is sometimes quantized to reduce precision in some fashion,

which is beneficial in some hardware settings. The label of a
query x is predicted by via § = argmax;cgy . ¢(2) - 0,
where the operands are sometimes normalized if appropri-
ate. In either case, this procedure can be interpreted as as-
sociating each class to a linear scoring function in A and
performing inference by picking the class of highest score
- a common paradigm in machine learning. Fine-tuning the
class vectors ¢; is common, often achieved by running the
Perceptron algorithm (Rosenblatt 1958), referred to as “re-
training” in HDC literature.

A number of HDC encoding methods have been pro-
posed to encode different types of data. For example, string
or text data can be encoded through the N-gram encod-
ing method (Joshi, Halseth, and Kanerva 2017; Imani et al.
2018). Concretely, let S = (ajagas...an) be a string of N
characters drawn from some alphabet A (say, the latin al-
phabet or {7, T, G, C}). To encode S, we start by assign-
ing each a € A an embedding ¢(a) by sampling uniformly

at random from {41/+/d}?, after which, we represent S as
aiop(az)op®(ag)o---op™N~1(ay) where o is element-wise
multiplication (Joshi, Halseth, and Kanerva 2017) and p is a
permutation operation of the vector coordinates, p” means
same permutation applied n times in sequence. If o is multi-
plication, the way IN-grams representations are constructed
makes them almost mutually orthogonal in H in the sense
that E[¢(S) - ¢(S")] = 1(S = S’). The deviation from this
expectation can be controlled using concentration arguments
(Thomas, Dasgupta, and Rosing 2021).

Finally, longer strings that contain multiple /N-grams can
be treated as a sum of N-gram vectors. This string encod-
ing scheme can be viewed as a “compressed” version of
the bag-of-words model (Harris 1954) in the sense that all
N-gram vectors are superimposed into one representation.
Intuitively, the inner product between two such encoded
strings can measure how “similar” two strings are, as that
value would be large if two strings shared many common N -
grams, and vice versa. For general feature vectors (or simple
images), techniques based on random projection are popu-
lar (Morris et al. 2021; Khaleghi et al. 2022).

Existing HDC encoding methods tend to capture fairly
simple notions of similarity based on the L1/L2 or angular
distance. However, the design of good encoding functions
for complex forms of data like graphs and time-series re-
mains an important area of research. For inspiration, we turn
to another area of machine learning that has thought exten-
sively about how to measure similarities between data points
using high-dimensional vectors.

Kernel Methods

Kernel methods are a wide ranging area of research in statis-
tics and machine learning that shares many similarities with
HDC (Shawe-Taylor and Cristianini 2004; Meanti et al.
2020; Hofmann, Scholkopf, and Smola 2008). Much like
in HDC, kernel methods work by embedding data into a
high-dimensional space wherein similarities are measured
using inner products. That is to say, kernel methods mea-
sure similarities between data points x,z’ € X via a func-
tion K(x,2") = ¢(x) - ¥(a'), called a “kernel function,”



where ¢ : X — H is an embedding into an inner prod-
uct space. For many types of kernel functions used in prac-
tice, it is possible to compute K (z,z’) directly on the am-
bient representation of the data without materializing the
embeddings. Notable examples include the Gaussian kernel
K(x,2") o< exp(—||z—2'||3), and the p-th order polynomial
kernel K (z,z') = (14« -2")P. Both of these kernels can be
evaluated in closed form on the ambient representation of the
data, allowing kernel methods to implicitly compute a simi-
larity based on a high-dimensional embedding. HDC, how-
ever, always explicitly materializes the embeddings, hence
the need for an encoding function ¢.

Kernel-based learning methods make predictions using
functions taking the form f(z) = Y. a;k(z;, x), where
z1, ..., Tp are training data points, and o, ..., o, are weights
that are learned by a training algorithm. Noting that f(z) =
Yo aik(m,a;) = Y(z) - 0 where = Y a;ih(x;), in
this way we can interpret such functions as linear models in
the embedding space associated with the kernel, much like in
the previous paragraph on HDC. One significant difference
between kernel methods and HDC, is that in the former the
embeddings are implicit, and similarities are evaluated us-
ing the kernel function. This property is appealing because
it allows one to efficiently work with infinite-dimensional
embeddings, which can have desirable properties for learn-
ing (Steinwart 2001).

Kernel Methods and HDC

There is a large body of theoretical and applied literature
on kernel methods that has developed kernel functions ap-
plicable to many settings of practical interest (Neumann
et al. 2016; Leslie, Eskin, and Noble 2001; Shimodaira et al.
2001; Shawe-Taylor and Cristianini 2004). To provide a con-
crete example of how the literature on kernel methods can
offer insights for the HDC community, we first consider the
encoding of time-series data in HDC. Similar to the previ-
ously discussed N-gram encoding, the permutation opera-
tion is applied to encode the temporal information of time-
series data (Joshi, Halseth, and Kanerva 2017; Asgarine-
jad, Thomas, and Rosing 2020). However, such encoding
schemes can fail if the events in two time-series do not align
exactly. Since each time step is associated with a unique per-
mutation during encoding, even a small shift in events be-
tween time-series can cause existing HDC encoding meth-
ods to map the two time-series to nearly orthogonal vec-
tors. In practice, however, if two time-series reflect the same
underlying activity or nature, one would expect their sim-
ilarity to be preserved after encoding, even if some event
misalignment exists. On this issue, the literature on ker-
nel methods suggests a solution: the dynamic-time-warping
kernel (Gudmundsson, Runarsson, and Sigurdsson 2008),
which can handle time-series sequences with misalignment
or time-stretching/compression.

For graphs, GraphHD (Nunes et al. 2022) proposes to en-
code graph topology induced by PageRank centrality met-
ric (Brin and Page 1998). However, this process does not
utilize crucial information such as node labels or node at-
tributes (where each node in the graph is associated with a
feature vector or a label). Such limitations have been ad-

dressed by kernel methods. For example, the propagation
kernell (Neumann et al. 2016) works with graphs that in-
clude node labels or node attributes, therefore is capable of
capturing a potentially richer notion of similarity.

In this work, our goal is to devise a procedure that
can translate any kernel into an equivalent HDC encoding,
thereby allowing practitioners to exploit the wealth of ker-
nel functions that have been designed for practical prob-
lems while continuing to reap the benefits of computing with
HDC representations.

Related Work

The connection between HDC and kernel approximation
is generally well known (Yu et al. 2022; Thomas, Das-
gupta, and Rosing 2021; Paxon Frady et al. 2021; Voelker
2020), mostly through the lens of random Fourier features
(RFF) (Rahimi and Recht 2007). RFF is a sampling based
scheme that generates a vector of features ¢(x) € R? with
the property that ¢(x) - ¢p(z') = K(x,2'), where K is a
shift-invariant kernel (kernel function that depends only on
the relative distance between inputs, e.g. the Gaussian kernel
and Laplacian kernels). Closely related methods arise in the
HDC literature under the names “nonlinear-encoding” (Mi-
randa and d’ Aliberti 2022; Imani et al. 2020) and “fractional
power encoding” (Paxon Frady et al. 2021). Using RFF in
the context of HDC means that inner products in HD space
approximate some shift-invariant kernel, usually the Gaus-
sian or Sinc kernels. However, a limitation of RFF is that
it can only work with shift-invariant kernels, which many
useful kernels do not satisfy, such as kernels on graphs and
strings. The Nystrom method provides a way to generate ap-
proximations for a larger class of kernels that do not need to
be translation invariant.

HDC Encoding via Nystrom Approximation

In this section, we describe our new encoding algorithm,
NysHD, for HDC using the Nystrém method for kernel ap-
proximation. We also demonstrate that the inner product be-
tween encoded samples, in expectation, preserves normal-
ized kernel values.

Given a suitable kernel function K, our goal is to generate
an encoding function ¢ : X — H such that ¢(x) - p(a’) ~
K(xz,2’) Vax,2’ € D, where D is some subset of X. This
property is useful for learning algorithms that are widely em-
ployed in HDC as it enables them to exploit more useful
similarities captured by the kernel.

Nystrom Method

Conventional realizations of kernel-based learning algo-
rithms commonly require storing all pairwise evaluations
of the kernel function in a large matrix G defined element-
wise by G;; = K(x;,z;), which is problematic when n is
large. The Nystrom method is a low-rank matrix approxi-
mation technique widely employed to speed up kernel ma-
chines by avoiding the need to store the entire kernel ma-
trix (Williams and Seeger 2000; Drineas, Mahoney, and
Cristianini 2005; Kumar, Mohri, and Talwalkar 2012). In
this way, the Nystrom method is similar to RFF since they



are both sampling-based schemes and can be used to approx-
imate kernel functions. The key difference between RFF and
the Nystrom method is that the Nystrom method can work
with a larger class of kernels than RFF, many of which are
useful for applications involving discrete structures such as
string and graph.

Intuitively, the Nystrém method works by sub-sampling
the kernel matrix and reconstructing the full kernel matrix
from the sampled one. This is possible because the ker-
nel matrix is typically close to low-rank in practice. Con-
cretely, suppose we have a dataset D = {1, x9,..., 2y},
from which we sample a set of landmarks Z = {z1, ..., 25},
where s < n. Let G € R™*" be the full kernel matrix de-
fined element-wise by G;; = K (z;,x;), and let Hz € R**®
be the sub-sampled kernel matrix defined element-wise by
(Hz);j = K(zi,z;). The Nystrom method yields the fol-
lowing approximation (Drineas, Mahoney, and Cristianini
2005):

G=CHiC"~G (1
Where C' is an n x s matrix such that C;; = K(z, 2;)
for some kernel function K and H}' denotes the pseudo-
inverse of H z. There is a robust theoretical literature on the
Nystrom method, providing bounds on approximation error
based on the number of selected landmarks and various sam-
pling strategies (Kumar, Mohri, and Talwalkar 2012). Let )
and A be the eigenvectors and eigenvalues of H z then:

H}_ _ QAleT

This allows one to generate encodings explicitly via
Onys(T:) = A=2QTC®, which approximates the kernel:

¢nys (xb) . ¢nys (.Z‘])

= (A*%QTc(i)) . (A*%QTC’(J'O — éu @)
Where x;,z; € D and C%) denotes the i*" row of C in a
column vector. While the encodings produced by Nystrom
method directly satisfy the desired kernel approximation
property, they are, in general, of high-precision which is un-
desirable in some settings of interest in HDC (Khaleghi et al.
2022). Our method rectifies this issue by composing the fea-
tures extracted using the Nystrom method with another en-
coding technique that preserves angular similarities which
we discuss in detail in the next section.

Due to the data-dependent nature of the Nystrom method,
the quality of its approximation and computational complex-
ity depends on the size and composition of Z. As an initial
step, in this paper we simply use uniform sampling without
replacement (Williams and Seeger 2000; Kumar, Mohri, and
Talwalkar 2012) as our sampling strategy. However, more
sophisticated strategies such as ensemble and adaptive sam-
pling (Kumar, Mohri, and Talwalkar 2012) for constructing
landmark sets can potentially lead to better performance and
warrant further exploration in future work.

Encoding Process

To achieve the aforementioned goals, we compose ran-
dom hyperplane rounding (Charikar 2002) with the Nystrom

method to generate HDC embeddings that approximate a de-
sired kernel. Alg. 1 describes the process for generating the
Nystrom embedding matrix, followed by data point encod-
ing in Alg. 2.

Algorithm 1: Generate the Nystrom embedding matrix

Require: kernel K over A, dataset D, number of landmarks
s > 0, HDC dimension d > 0
Z <+ sample s points from D without replacement
/*Landmarks*/
(Hz)ij:K(Zi,Zj) v OSZ,]SS
/*Partial kernel Matrix over landmarks*/

QAQT = H:
/*Symmetric Eigen-decomposition™/
R‘p = [w13w17 e 7wd}T S Rdxs

/*w; sampled from s dimensional unit sphere*/
1

Pnys = RpA_EQT

return Py, 2

Algorithm 2: Encode one data point from D

Require: z; € D, Nystrom embedding matrix Py, Land-
marks Z and kernel function K
C(l) = [K(xl,zl) K(xi,zz)

return /5 sign (PyC")

K(z;, zs)]T c R

The rows of P, € R** are sampled from the uniform
distribution over the s-dimensional unit sphere. This enables
the following result regarding sign-thresholded random pro-
jection: suppose v, v’ € R™ are unit vectors, with respect
to randomness in the sampling of FP,,, the following result
holds with randomness in the sampling of P, (see for in-
stance (Charikar 2002)):

E ésign(Prpv) -sign(Ppv’) | = (1 = 2cos™ (v - v')/7)
3)

NysHD generates encodings for which the similarity in-
duced by the kernel K is preserved by dot product between
the encodings in 7. We summarize this result in the follow-
ing theorem:

Theorem 1. Let K be a positive-definite kernel and, us-
ing the notation of Algorithms 1 and 2, and recalling that

(bnys(xi) - A_%QTC(”, deﬁne:

m .
¢(1’1) =4/ ?dSlg”(PrprnyS(xi))
Then, for all x;,z; € D:

Elp(x) ¢ (x;)] = & —cos [ 2| @)

2 \V Giiéjj

Where Gij is estimated kernel value between x; and x; pro-
duced by Nystrom method. The expectation is taken with re-
spect to randomness in the sampling of landmarks and P,,.



Proof: Let ¢y (2;) denote normalization: Hi:j;igg” Not-

ing that sign(cv) = sign(v) for any v if ¢ > 0:
¢ (i) - & (z;)

™

= 5 (8180 (Bpdnys (21)) - sign (Ppduys (25)))

- % (iﬁign (Prpnys(:)) - sign (Prpd)nys(mj)))

Using result regarding sign-thresholded random projection
in equation 3, we have:

E [¢(~Tz) '¢($j)]
— ™ (1 _ 2cos™! (Qz_)nys($z) : Q_Snys(l'j))> (6)

™

&)

2

Recalling the Nystrém method in equation 2 and the fact

that || ays (2:)]| = \/Pays () - bays (1) = VG

_ _ Gy
Gups(2:) - g2 = — 2 @
GiGijj
Finally:
Efp(z:) - ¢(xy)] = T cos™! L 6

? \/GiiGij

To make the relationship with kernel approximation more

explicit, consider the first order Taylor expansion of cos™!.

Since ||¢nys(z:)|] = ||dnys(z;)|| = 1, it follows that —1 <

q_bnys(mi) . gz_bnys(:cj) < 1, which means Cij

VGiiGij

is within the

domain of cos™!, So:

™ m éz i
Ef(e:) dlzy)] 5 — | 5 —
GGy
A JJ )
__ Gy
ey

Note that this is called normalized kernel (Ah-Pine 2010).
As shown above, NysHD preserves the kernel in H (up to the
first order approximation) in the sense that the inner prod-
uct between any pair of encoded data points approximates
the normalized kernel value of some user-defined kernel K.
Since HDC relies on the inner product in H for inference,
as described in Section “Learning with HD” , the similarity
metric captured by the kernel K is preserved, which benefits
subsequent HDC learning algorithms.

Encoding Complexity

The proposed encoding method differs from existing HDC
methods because generating embeddings using the Nystrom
method requires computing a partial kernel matrix. For this
reason, similar to kernel machines, the efficiency of our al-
gorithm depends heavily on the number of kernel computa-
tions, which is related to the size of landmarks set s.

In this section, we provide an asymptotic runtime anal-
ysis of the encoding algorithm. Assuming that evaluat-
ing the kernel function K takes O(m), that is to say the
complexity of kernel function is linear in the dimension
of the input (e.g., the Gaussian kernel) - the complex-
ity of running the encoding algorithm over a dataset of n
samples with s landmarks to d dimensional embedding is
O(max (s3, snm, snd)). The first term corresponds to the
symmetric eigen-decomposition of the matrix H z, the sec-
ond term reflects the number of kernel evaluations, and the
last term represents the sign-thresholded random projection,
as discussed previously. In a typical Nystrom kernel approx-
imation setting where s < n, depending on the nature of
the kernel function being used, the second term is likely to
be the dominant term, which is why the choice of s and K
is crucial. Moreover, the analysis we provided here assumes
the complexity of the kernel is linear in the number of fea-
tures (for example, the Gaussian kernel); however, this is not
always the case for kernel functions. For example, the spec-
trum kernel (Leslie, Eskin, and Noble 2001), which com-
pares the N-gram composition between two input strings,
has O(mlog(m)) in the length of the input sequences.

Evaluation

We conduct an empirical evaluation of NysHD. First, we
validate 1 and then evaluate the practicality of our method
in terms of accuracy and efficiency against both HDC and
non-HDC baselines.

Datasets and Kernel Functions

The proposed encoding method is general-purpose and ap-
plicable to various data and tasks, provided a suitable kernel
function is available. To confirm its versatility, we conduct
assessments across two distinct tasks: Graphs and Strings
classification. In total, we have chosen 8 graph datasets from
TUDataset (Morris et al. 2020), a well-known standardized
repository for graph classification benchmarking datasets,
and 4 string datasets for bio-sequence and text classification.
More information on datasets can be found in Table. 1.

The main advantage of our method is that it generates
embeddings for HDC learning algorithms that preserve any
user-defined positive-semidefinite kernel function. As such,
the choice of kernel function is crucial for achieving the
best accuracy and efficiency. For our method, we use the
gappy kernel (Leslie, Kuang, and Bennett 2004) for string
classification. The gappy kernel is a variant of the spectrum
kernel (Leslie, Eskin, and Noble 2001) that allows a small
amount of gap within the N-grams. The propagation ker-
nel (Neumann et al. 2016) is used for graph classification
for its ability to work with labeled or attributed graphs, as
discussed in the section “kernel methods” . We chose the
aforementioned kernels for their relatively low computation
complexity and effectiveness on respective tasks.

Experimental Setup and Baselines

We benchmark our method against the existing HDC
encoding baselines within each domain: Graph classi-
fication using the encoding scheme from introduced in



Task dataset # training  # testing  # class Description
Graph ENZYMES (Borgwardt et al. 2005) 480 120 6 Graph with attributed nodes
NCI1 (Wale, Watson, and Karypis 2008) 3288 822 2 Graph with labeled nodes
D&D (Dobson and Doig 2003) 943 235 2 Graph with labeled nodes
BZR (Sutherland, O’brien, and Weaver 2003) 324 81 2 Graph with attributed nodes
MUTAG (Debnath et al. 1991) 150 38 2 Graph with labeled nodes
COX2 (Sutherland, O’brien, and Weaver 2003) 373 94 2 Graph with attributed nodes
NCI109 (Wale, Watson, and Karypis 2008) 3301 826 2 Graph with labeled nodes
Mutagenicity (Riesen and Bunke 2008) 3469 868 2 Graph with labeled nodes
String Protein (Selvaraj et al. 2023) 721 181 6 Protein sequence
SMS (Almeida and Hidalgo 2012) 4459 1115 2 Nautral Language
Splice (Towell, Noordewier, and Shavlik 1992) 2552 628 3 DNA sequence
Promoter (Harley and Noordewier 1990) 84 22 2 DNA sequence

Table 1: Summary of tasks and datasets

GraphHD (Nunes et al. 2022) and String classification uses
N-gram HDC encoding approach (Joshi, Halseth, and Kan-
erva 2017). The details of both HDC encoding methods are
discussed in the background section.

In addition to HDC-baselines, we also include com-
parisons with popular state-of-the-art deep neural net-
work architectures. For graph classification, we use
DGCNN (Zhang et al. 2018), GCN (Chen, Bian, and Sun
2019), GIN (Xu et al. 2018), GIUNet (Amouzad et al.
2024). On string datasets, following the recent trend of ap-
plying large models for bio-sequence and language model-
ing (Qiu et al. 2020; Raffel et al. 2020), we fine-tune Large
protein model (ESM-2-8m (Rives et al. 2021)) for for bio-
sequence datasets, and large language model (BERT (De-
vlin et al. 2018)) for natural language dataset.

For our method, we set the number of landmarks: s =
maxz(300, 2% of training data) on each dataset, and kernel
specific hyperparamters are chosen empirically. To ensure
the fairness of comparison, we use an identical HDC learn-
ing pipeline adapted from OnlineHD (Herndndez-Cano et al.
2021) when evaluating different HDC encoding methods.
The Perceptron algorithm (Rosenblatt 1958) is used to fine-
tune class prototypes. In all of our experiments, 20 epochs
of fine-tuning have been found to be sufficient.

All experiments were run on an Intel i5-11400 CPU (ex-
cept for large models fine-tuning, which required an Nvidia
RTX 3050 GPU is used due to long training time on CPU).
We evaluate different methods by their training efficiency
(time in seconds) and classification accuracy. Each experi-
ment was run 10 times, and we report the mean and standard
deviation of the results.

Approximating Normalized Kernel Matrix

The classification accuracy of HDC-based models hinges on
the capability of encodings to capture some salient notion
of similarity via inner product. A straightforward way to
verify our encodings preserve the kernel is to compare the
spectral norm of the normalized kernel matrix (computed
using the kernel function) with the pairwise inner products
of the encodings. Using different percentages of the train-
ing samples as landmarks, the results for selected datasets
(ENZYMES, NCI1, Protein, Promoter) are shown in Fig. 2.
In line with Theorem 1, our method preserves the normal-

ized kernel value, whose quality is positively correlated with
the number of landmarks (a less noisy approximation can
be achieved with a larger number of landmarks). The results
here indicate that our method is effective in transferring sim-
ilarity functions in kernel methods to HDC settings.

Accuracy and Efficiency Results

The accuracy results for graph and string datasets are sum-
marized in Table 2 and Table 3. In comparison with the
GraphHD, NysHD achieves, on average, 11% better accu-
racy on graph datasets. The improvement is especially sig-
nificant on the ENZYMES dataset, which shows a 38% ac-
curacy improvement. This is because the previous HDC en-
coding method on graph (Nunes et al. 2022) could not utilize
node attributes in attributed graphs, whereas our method can.
On string datasets, our method again consistently achieves
better accuracy compared to /N-gram based HDC encoding,
with an average improvement of 17%. Efficiency-wise, our
method is comparable to previous HDC encoding methods,
although it is slightly slower than GraphHD (Nunes et al.
2022) on graph datasets due to kernel computation.

Despite the efficiency and implementation simplicity of
HDC learning algorithms, there remains an accuracy gap be-
tween HDC-based models and deep neural network (DNN)
models for more complex classification tasks. We hope this
work will help reduce that gap. To that end, we also include
several state-of-the-art DNN approaches on both graph and
string classification in our comparison. On graph datasets,
NysHD achieved the best accuracy in 3 out of 8 graph
datasets. On average, NysHD outperforms DGCNN by 3%,
GIN and GIUNet by 6% for graph classification. Although
graph convolutional network (GCN) still yield the best ac-
curacy for some datasets, our method is on average 52%
faster than GCN. On string datasets, our method with the
gappy kernel achieves better accuracy on 2 out of 3 bio-
sequence datasets. For SMS and Splice dataset, the LM fine-
tune method achieves better classification accuracy, but their
training time is 6 to 83 times longer than our method.

Overall, the strength of NysHD becomes most apparent
when dealing with data with complex structures or attributes
that existing HDC encoding methods do not exploit.
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Figure 2: Numerical difference of spectral norm between normalized kernel matrices compute directly from kernel function
and approximated kernel matrices with our encoding.

Method NCI1 ENZYMES D&D BZR MUTAG COX2 NCI109  Mutagenicity
DGCNN Acc.|702+£22% 369+4.6% 745+34% 815+£44% 829+4.1% 783+£27% 71.1+22% 75.0+13%
Time| 375+ 1.2s 5.6=+05s 592+£30s 4.0=+0.0s 1.0 £0.0s 41+03s 362+09s 44.8+13s

GCN  Acc. |799+11% 60.7+2.1% 748+ 1.6% 842+22% 855+3.8% 831+3.7% 80.2+11% 799 +1.0%
Time| 74.3 £0.6s 159+ 0.5s 262.3+92s 79=+0.3s 30+£00s 11.0£00s 735£0.7s 753=+0.5s

GIN Acc. | 734+ 1.7% 288 £42% 675+£59% 764+84% 768 +9.6% 78.1+£43% 70.8=+2.6% 78.0+1.7%
Time| 66.8+1.0s 9.0£0.0s 63.6£0.7s 6.0=+0.0s 2.0+ 0.0s 7.2+ 04s 671055 70.5+£0.5s

GIUNet Acc.|724+14% 299+40% 634+£69% 783 +107% 85.0+47% 774+70% 688+43% 765=+0.8%
Time| 89.0+0.4s 13.0+£00s 96.2+£0.7s 9.0=+0.0s 30+00s 11.0£00s 89.5£0.5s 94.6+0.5s

GraphHD Acc.|60.0+2.1% 232+23% 67.6+£13% 749+£2.1% 853+£102% 81.9+39% 599+2.1% 598+ 1.7%
Time| 30.0+£0.7s 6.0£0.0s 32.9+£03s 3.0=%0.0s 1.0 £0.0s 30+0.0s 30.0£0.0s 31.3+0.4s

NysHD Acc.|73.84+22% 613+25% 762+28% 820+£33% 855+34% 746+37% 71.8+2.0% 752+0.9%
Time| 43.8+08s 72=£0.6s 354+16s 34=+0.5s 2.0£0.0s 55+£08s 444+£08s 357+ 1.0s

Table 2: Experimental results. The best accuracy result for each dataset are highted and second best are underlined.

Method Protein SMS Promoter Splice
LM 96 + 0% 9+0% 82+27% 92+14%
Finetune | 2003 4+ 193s 2846 £31s 6+ 3.0s 142+ 1.9s
N-gram | 96 £0.8% 974+03% 52+4.0% 43 +4.9%
HDC 134+00s 43+£04s 1£00s 25+0.8s
NysHD | 98 +£03% 97 +02% 89+34% 72+1.7%
194+07s 34+£00s 1£00s 21+03s

Table 3: Accuracy and training time on string datasets

Overhead & Scalability

This work allows future HDC works to exploit the power
of kernel methods while still conforming to the general for-
malism and benefits of HDC. We recognize that the im-
provements in NysHD also come with additional computa-
tion costs in the form of kernel evaluation. How to minimize
such cost for HDC applications are non-trivial problems that
need further investigations. The main scalability challenge
is to obtain a set of landmarks that is as small as possible,
while still providing a good approximation to the true kernel
matrix. There is a large body of work on more sophisticated
sampling schemes for the Nystrom method that could help
make our methods scalable to larger datasets (Kumar, Mohri,
and Talwalkar 2012; Musco and Musco 2017). We would be
interested in studying these in future work.

Conclusion

The success of HDC-based learning methods is contingent
upon identifying an encoding function that preserves a suit-
able notion of similarity (kernel) for the task at hand. In
this paper, we leverage the connection between the kernel
method and HDC through the lens of Nystrom method for
kernel estimation. Particularly, we propose NysHD, a new
HDC encoding method that constructs encoding functions
using suitable kernel functions for specific tasks. As a result,
compared with previous HDC encoding methods, NysHD
achieves substantial improvements - on average, 11% ac-
curacy improvement on graph datasets and 17% on string
datasets. There are many situations in which methods from
the kernel literature outperform existing HDC-based solu-
tions, therefore, our approach can be expected to lead to per-
formance improvements in many HDC applications.
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