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Introduction
Ø While great progress has been made in lifelong learning, it is still 

challenging to deploy the existing algorithms in the wild to learn 
over time in a real-world application, e.g., self-driving vehicles

Ø Existing works rely on prior knowledge to produce good results

Ø We aim at closing the gap towards real-world lifelong learning

Method
Ø We design SCALE around three components which function 

collaboratively to maximize the performance
• Pseudo-supervised contrastive loss
• Self-supervised forgetting loss
• Online memory update for uniform subset selection

Experiments
Ø We experiment on five types of iid and class-incremental streams 

sampled from CIFAR-10, CIFAR-100 and TinyImageNet
Ø Key baselines: STAM [IJCAI 2021], CaSSLe [CVPR 2022], LUMP 

[ICLR 2021]
Ø SCALE outperforms the best state-of-the-art algorithm on all settings 

with improvements of up to 6.43%, 5.23%, 5.86% kNN accuracy on 
CIFAR-10, CIFAR-100 and TinyImageNet
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Problem Definition
Ø Online unsupervised lifelong learning without prior knowledge

• Non-iid and single-pass data streams
• No task or class labels
• No prior knowledge, e.g., task/class shift boundaries

Ø We consider four different types of class-incremental streams 
inspired from real-world applications

Training and 
evaluation 
protocol

Loss function

Pseudo-supervised contrastive loss aims to 
enhance similarity between positive pairs over 
negative pairs

Pseudo-positive set, defined as 
samples in the near-by neighborhood: Similarity 

threshold

Self-supervised forgetting loss 
aims to preserve the knowledge of 
pairwise similarity, and mitigate 
forgetting
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among feature representations, 
on the current batch, using current 
model and the frozen model from 
the previous batch

Online memory 
update is critical for 
the overall 
performance, aiming 
for keeping a 
balanced subset of 
historical samples.

We employ the Part 
and Select 
Algorithm (PSA) [1] 
for uniform online 
subset selection.
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Ø In ablation study, we 
found that uniform online 
memory update is 
important for contrastive-
based learning methods 
like SCALE

Our code is available at: https://github.com/Orienfish/SCALE
(or scan the QR code)
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Ø SCALE enjoys 
gradually increasing 
kNN accuracy as we 
introduce new 
classes, while most 
baselines are 
subject to forgetting 

https://github.com/Orienfish/SCALE

