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Abstract

Unsupervised lifelong learning refers to the ability to
learn over time while memorizing previous patterns with-
out supervision. Although great progress has been made
in this direction, existing work often assumes strong prior
knowledge about the incoming data (e.g., knowing the class
boundaries), which can be impossible to obtain in complex
and unpredictable environments. In this paper, motivated by
real-world scenarios, we propose a more practical problem
setting called online self-supervised lifelong learning with-
out prior knowledge. The proposed setting is challenging
due to the non-iid and single-pass data, the absence of ex-
ternal supervision, and no prior knowledge. To address the
challenges, we propose Self-Supervised ContrAstive Life-
long LEarning without Prior Knowledge (SCALE) which
can extract and memorize representations on the fly purely
from the data continuum. SCALE is designed around three
major components: a pseudo-supervised contrastive loss, a
self-supervised forgetting loss, and an online memory up-
date for uniform subset selection. All three components
are designed to work collaboratively to maximize learning
performance. We perform comprehensive experiments of
SCALE under iid and four non-iid data streams. The results
show that SCALE outperforms the state-of-the-art algo-
rithm in all settings with improvements up to 3.83%, 2.77%
and 5.86% in terms of kNN accuracy on CIFAR-10, CIFAR-
100, and TinyImageNet datasets. We release the imple-
mentation at https://github.com/Orienfish/
SCALE.

1. Introduction

Lifelong learning, or continual learning, refers to the
ability to continuously learn over time by acquiring new
knowledge and consolidating past experiences. One ma-
jor challenge of lifelong learning is to combat catastrophic
forgetting, i.e., updating the model using new samples de-
grades existing knowledge learned in the past [26, 51].

Existing work has assumed various levels of prior knowl-
edge about the input data stream. Supervised Lifelong

Figure 1. SCALE functions on a self-driving vehicle where
the order of the input image sequence can be unforeseeable due
to environmental or operational factors. SCALE learns self-
supervisedly by contrasting with memory samples. SCALE’s
pseudo-contrastive loss is inspired from the InfoNCE objec-
tive [54]. While SimCLR [15] only uses an augmented sample
and SupCon [40] uses samples with the same label to form a posi-
tive set, to improve similarity within the set, SCALE self-distills a
pseudo-positive set based on pairwise similarity. SCALE does not
rely on any supervision or prior knowledge.

Learning presumes the presence of task and class labels
along with samples [14, 29, 41, 48]. General Continual
Learning or task-free continual learning eliminates the task
labels and boundaries to focus on real-time adaptation to
non-stationary continuum with limited memory, but still us-
ing class labels [6, 9, 44, 80]. Unsupervised Lifelong Learn-
ing completely removes all labels; therefore, the algorithm
needs to distill the knowledge from raw samples or stream-
ing structure on its own [2, 37, 77].

While great progress has been made in lifelong learning,
it is still challenging to deploy the existing algorithms in
the wild to learn over time. One of the reasons is that even
in the pure unsupervised setting, existing works assumed
knowing the class boundary or the total number of classes
in advance [58, 62, 71]. Such prior knowledge greatly eases
the difficulty of learning without forgetting. For example,
if the class boundary is distinct and known, the learning
algorithm can expand the network or create a new mem-
ory buffer whenever detecting a class shift. But these prior
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knowledge is extremely difficult, if not impossible, to obtain
in real-world environments which are complex and unpre-
dictable. Specifically, consider a camera mounted on a ve-
hicle and an application of continuously training an image
classification algorithm as the vehicle moves around (Fig-
ure 1). The sequence of incoming samples depends on the
environment and the trajectory of the vehicle, hence, is very
hard to predict when and how smooth the shift is.

In this paper, to align with the unpredictable real-world
scenarios, we extend the current unsupervised learning set-
ting to a more challenging and practical case: online un-
supervised lifelong learning without prior knowledge. In
particular, we make no assumption on the input streams:

(i) Unlike offline self-supervised learning [11,15], the in-
put data is non-iid and single-pass, i.e., all data sam-
ples appear only once.

(ii) Unlike General Continual Learning [9, 44] and task-
based lifelong learning [24, 31, 46, 49], the class and
task labels are not given (no external supervision).

(iii) Unlike VAE-based design [62] and KMeans-based
progressive clustering [31,70], the task or class bound-
aries and the number of classes are unknown in ad-
vance (no prior knowledge).

Additionally, the input stream can have distinct/blurred
class boundaries or an imbalanced class appearance, all of
which are not revealed to the algorithm. Our problem set-
ting reflects the complexity and difficulty of lifelong learn-
ing problems in the real world1.

Recognizing the unique challenges, we propose Self-
Supervised ContrAstive Lifelong LEarning without Prior
Knowledge (SCALE). SCALE is designed around three
major components: a pseudo-supervised contrastive loss for
contrastive learning, a self-supervised forgetting loss for
lifelong learning, and an online memory update for uni-
form subset selection. All components are critical to the
final learning performance: the contrastive loss enhances
the similarity relationship by contrasting with memory sam-
ples, the forgetting loss prevents catastrophic forgetting,
and the memory buffer retains the most “representative”
raw samples within the limited buffer size. Our loss func-
tions utilize pairwise similarity among the feature repre-
sentations, thus eliminating the dependency on labels or
prior knowledge. Moreover, contrastively learned represen-
tations have been shown to be more robust against catas-
trophic forgetting compared to the use of end-to-end cross-
entropy loss [12].

Our contributions can be summarized as follows:

(1) We propose a more practical setting for unsupervised
lifelong learning which assumes that the input data
streams are non-iid and single pass, and no external
supervision or prior knowledge is given.

1In this paper we focus on image classification while the same setup
and methodology can be easily extended to other applications as well.

(2) We design SCALE to extract and memorize knowl-
edge on-the-fly without supervision and prior knowl-
edge. SCALE uses contrastive lifelong learning based
on self-distilled pairwise similarity, along with an on-
line memory update to retain the “representative” raw
samples on imbalanced streams.

(3) We perform comprehensive experiments on five dif-
ferent types of single-pass data stream sampled from
CIFAR-10, CIFAR-100 and TinyImageNet datasets.
SCALE outperforms state-of-the-art algorithms in all
settings.

2. Related Work
Self-Supervised Learning (SSL) has been developed to

learn low-dimensional representations on offline datasets
without class labels, for various downstream tasks. Vari-
ational autoencoder (VAE)-based designs aimed for data
reconstruction assuming various prior models in the latent
space [37,39,52]. Progressive clustering-based methods al-
ternated between network update and clustering for self-
labeling until convergence [10, 11, 13, 30, 63, 78]. Infor-
mation theory-based techniques maximized the mutual in-
formation between representations of augmented samples
to retain invariance and avoid degenerate solutions [8, 22,
34, 36, 45, 82]. Contrastive learning draws closer the aug-
mented representation pairs while pushing away the oth-
ers [15–17, 32, 54]. Recent architecture techniques such as
BYOL, SimSiam and OBoW [18, 25, 27] used asymmetric
networks to prevent learning trivial representations. How-
ever, all the above-mentioned works are designed for offline
iid data and do not address catastrophic forgetting.

Supervised Lifelong Learning has been widely ex-
plored in three lines: dynamic architecture [1,43,55,60,66,
74], regularization [3, 4, 41, 65, 81, 83, 84], and experience
replay using a memory buffer [9,14,19,29,35,48,64,72,75].
Recently, a large amount of effort has been invested in on-
line supervised lifelong learning. Most works used memory
replay, such as Co2L [12], CoPE [20], GMED [38], Dual-
Net [57], ASER [68], SCR [50], OCM [28], ODDL [80],
OCD-Net [44]. Nevertheless, the problem is significantly
simplified with the presence of class labels.

Unsupervised Lifelong learning (ULL) is mostly stud-
ied under offline iid data with multiple passes on the en-
tire dataset during training [2, 37, 77, 79]. In contrast, on-
line ULL is more challenging due to the non-iid and single-
pass data continuum. Lifelong generative models leveraged
mixture generative replay to mitigate catastrophic forget-
ting during online updates [61, 62]. However, these VAE-
based methods were computationally expensive. Many re-
cent works have applied self-supervised knowledge distil-
lation on task-based online ULL. He et al. [31] utilized
pseudo-labels from KMeans clustering to guide knowl-
edge preservation from the previous task. CCSL [46] em-



Table 1. Comparison of previous work and SCALE (this paper) on assumed prior knowledge.

Papers Single-pass Non-iid No task labels No class labels

VASE [2], CURL [62], L-VAEGAN [79] × X X X

He et al. [31], CCSL [46], CaSSLe [24], LUMP [49] X X × X

Tiezzi et al. [71], KIERA [58] X X X ×
STAM [69], SCALE (this paper) X X X X

ployed self-supervised contrastive learning for intra- and
inter-task distillation. CaSSLe [24] proposed a general
framework for SSL backbones, which extracted the best
possible representations that are invariant to task shifts.
LUMP [49] mitigated forgetting by interpolating the cur-
rent task’s samples with the finite memory buffer. But all
of these works relied on task boundaries to generate good
results. Tiezzi et al. [71] developed a human-like attention
mechanism for continuous video streams with little super-
vision. KIERA [58] and STAM [69] employed expand-
able memory architecture for single-pass data using online
clustering, novelty detection and memory update. KIERA
required labeled samples in the initial batch of each task
for cluster association. The problem definition of STAM
is most similar to ours. Yet, STAM’s memory architecture
cannot be trained with common optimizers, and thus is lim-
ited in fine-tuning for downstream tasks.

We summarize the existing contributions for online ULL
in Table 1 based on the assumed prior knowledge. The pro-
posed SCALE excels existing works in that SCALE learns
low-dimension representations online without any external
supervision or prior knowledge about task, class or data;
thus, it better adapts unpredictable real-world environments.

3. Online Unsupervised Lifelong Learning
without Prior Knowledge

In this section, we present the online unsupervised life-
long learning problem without prior knowledge. Our setup
is motivated by real-world applications and extended from
previous studies by removing certain assumptions.
Input streams. We assume the data comes in a class- (or
distribution-) incremental manner. Such a setup mimics
continuous and periodic sampling while the surrounding en-
vironment changes over time. Suppose that the input sam-
ples are drawn from a sequence of T classes with each class
corresponding to a unique distribution in

{
P1, ...,PT

}
.

The complete input sequence can then be represented as
D =

{
D1, ...,DT

}
where Dt denotes a series of nt batches

of samples, i.e., Dt = {Xt
1, ..., X

t
nt
}. With t denoting the

class ID and u representing the batch ID in the current class,
each batch of data Xt

u is a set of samples {xt1, ...,xt|Xt
u|
},

where xti ∼ Pt(X). In the rest of the paper, we use capital
letters to denote batches and lowercase letters for individual
samples. Each training batch Xt

u ∈ Dt appears once in the
entire stream (single-pass) while the task and class labels

are not revealed. The total number of classes T , the transi-
tion boundaries and the batch numbers nt are not known by
the learning algorithm either. Our goal is to learn a model
that distinguishes classes or distributions

{
P1, ...,PT

}
at

any moment throughout the stream, without supervision by
external labels or prior knowledge.

Based on previous problem formulations [58,62,69], five
particular types of input streams are considered: (i) iid data
that is sampled iid from all classes. (ii) Sequential class-in-
cremental stream where the observed classes are balanced
in length and are introduced one-by-one with clear bound-
aries that are not known by the algorithm. (iii) Sequen-
tial class-incremental stream with blurred boundaries. The
boundary is blurred by mixing the samples from two con-
secutive classes, mimicking class shift is smooth and diffi-
cult to detect. (iv) Imbalanced sequential class-incremen-
tal stream uses different batch sizes in each class, mimick-
ing distribution shifts at unpredictable times. (v) Sequen-
tial class-incremental stream with concurrent classes where
more than one class is incrementally introduced at the time.
In this paper two classes are revealed concurrently and Pi
refers to their combined distribution. To aid understanding,
we use a self-driving vehicle with a mounted camera as an
example to visualize all five input streams as shown in Fig-
ure 2.

Training and evaluation protocol. The training and eval-
uation setup is similar to [62, 69] and is detailed in Fig-
ure 2. The model is a representation mapping function
to a low-dimensional feature space, i.e., fθ : X → Z
where θ represents learnable parameters and Z refers to
the low-dimensional feature space. The training proceeds
self-supervisedly based on the feature representation batch
Ztu = fθtu(Xt

u). As for evaluation, we periodically test
the frozen model θtu on a separate dataset E = {(xj , yj)}
as the training progresses. We randomly sample an equal
amount of labeled samples from each class possibly seen in{
P1, ...,PT

}
and add them to E . Thus even when the class

has not shown up in the sequence, it is always included in
E . For each testing sample (xj , yj) ∈ E , we first compute
the learned latent representations zj = fθtu(xj). We then
apply a classifier g : Z → Y on zj to generate the pre-
dicted labels ŷj . The classifier g can be unsupervised or su-
pervised to evaluate different aspects of the representation
learning ability. Following previous protocols [62, 69], we
use spectral clustering, an unsupervised clustering method,



Figure 2. The training and evaluation setup of online ULL taking the self-driving vehicle as an example. The input samples are from
classes of vehicles, stop signs, pedestrians and traffic cones. We consider five typical input streams of iid, sequential classes, sequential
classes with blurred boundaries, imbalanced sequential classes, and sequential classes with concurrent class appearance. Each training step
updates the model self-supervisedly based on the feature representations, while periodic evaluation is triggered on a separate evaluation
dataset using supervised or unsupervised classifiers on the learned feature representations.

and employ unsupervised clustering accuracy (ACC) as the
accuracy metric. ACC is defined as the best accuracy among
all possible assignments between clusters and target labels:

ACC = max
ψ

∑|E|
j=1 1 {yj = ψ(ŷj)}

|E|
. (1)

Here, the predicted label ŷj is the cluster assignment to sam-
ple xj , ψ ranges over all possible one-to-one mappings be-
tween ŷj and yj . For supervised classification, we employ
k-Nearest Neighbor (kNN) classifier.
Challenges. The major difference between our online un-
supervised lifelong learning and previous problems is the
prior assumptions about the input stream. Online ULL is
more challenging than previous ULL problems as shown in
Table 1 from three aspects:

(C1) The non-iid and single-pass input data streams re-
quire online knowledge distillation, which is largely
different from offline self-supervised learning with
iid data and multi-pass training [11, 15, 82].

(C2) The lack of task or class labels differs our online
ULL from General Continual Learning (with class
labels) [9, 44] and task-based lifelong learning (with
task labels) [24, 31, 46, 49]. The model must distill
the knowledge from the stream on its own without
external supervision.

(C3) The absence of prior knowledge. Existing ULL
methods rely on class boundaries [24, 31, 46, 49] or
maintain and update class prototypes after detecting
a shift [58, 62]. However, these approaches do not
apply when there is no prior knowledge, especially
with smooth transitions, imbalanced streams or si-
multaneous classes as in our online ULL.

4. The Design of SCALE
To address the above challenges of online ULL, we pro-

pose SCALE, an unsupervised lifelong learning method
that can learn over time without prior knowledge. An

overview of SCALE is shown in Figure 3. SCALE is
designed around three major components (shown in yel-
low boxes): a pseudo-supervised contrastive loss, a self-
supervised forgetting loss, and an online memory update
module that emphasizes uniform subset selection. By com-
bining stored memory samples with the streaming samples
during learning, SCALE addresses challenge (C1). Sec-
ondly, SCALE uses the newly proposed pseudo-supervised
contrastive learning paradigm that distills the relationship
among samples via pairwise similarity. Pseudo-supervised
distillation works without task or class labels thus handles
challenge (C2). Learning from pairwise similarity does not
depend on class boundaries or the number of classes, there-
fore SCALE responds to challenge (C3).

We emphasize that all components are carefully de-
signed to work collaboratively and maximize learning per-
formance: the contrastive loss is responsible for extract-
ing the similarity relationship by contrasting with memory
samples, the forgetting loss retains the similarity knowl-
edge thus prevents catastrophic forgetting, finally the online
memory update maintains a memory buffer with represen-
tative raw samples in the past. We record the raw input
samples rather than feature representations in the memory
buffer because feature representations might change during
training. The quality or the “representativeness” of mem-
ory samples can significantly affect learning performance,
as demonstrated by our results in the evaluation section.

Figure 3 shows the pipeline of SCALE in detail. Mem-
ory buffer is assumed to have maximum size of M , and the
stored memory samples are represented by {ei}Mi=1. Each
streaming batch Xt

u with batch size of n = |Xt
u| is stacked

with a randomly sampled subset of m memory samples to
form a combined batch {xi}m+n

i=1 as input to SCALE. We
apply double-view augmentation to the stacked data and
obtain {x̃i}2(m+n)

i=1 where x̃2k−1, x̃2k denote two randomly
augmented samples from xk. The augmented samples are
fed into the representation learning model fθ to obtain
normalized low-dimensional features z̃i = fθ(x̃i),∀i ∈
{1, ..., 2(m+ n)}. SCALE distills pairwise similarity from



Figure 3. The pipeline of SCALE is designed around three major components depicted by yellow boxes. The right-hand portion in orange
includes the operations related to self-supervised contrastive and lifelong learning. The left-hand portion in green contains the procedures
related to online memory update. SCALE requires careful design for all three components to distill and memorize knowledge on the fly.

{z̃i}2(m+n)
i=1 , which are then used to compute the pseudo-

supervised contrastive and forgetting losses to update the
current model θtu. On the other hand, online memory up-
date takes previous memory buffer {ei}Mi=1 and the stream-
ing batch Xt

u as input, selects a subset of M samples to
store in the updated memory buffer. We discuss the details
below.

4.1. Pseudo-Supervised Contrastive Loss and Self-
Supervised Forgetting Loss

The loss function of SCALE has two terms: a novel
pseudo-supervised contrastive loss Lcont for learning rep-
resentations and a self-supervised forgetting loss Lforget for
preserving knowledge:

L = Lcont + λ · Lforget. (2)

A hyperparameter λ is used to balance the two losses. Both
loss functions rely on pairwise similarity hence do not need
prior knowledge and adapt to a variety of streams.
Pseudo-Supervised Contrastive Loss. Our contrastive
loss is inspired from the InfoNCE objective [54] which en-
hances the similarity between positive pairs over negative
pairs in the feature space. SimCLR [15] and SupCon [40]
are the typical offline contrastive learning techniques using
InfoNCE loss. Different from SimCLR (treats only the aug-
mented pair as positive, unsupervised) and SupCon (forms
the positive set based on labels, supervised), SCALE es-
tablishes a pseudo-positive set based on pairwise similar-
ity. Given a feature representation z̃i, its pseudo-positive
pair z̃j is selected from the self-distilled pseudo-positive set
Γi. Negative pairs are all non-identical representations in
the augmented batch {z̃i}2(m+n)

i=1 . Formally, the pseudo-
supervised contrastive loss is defined as:

Lcont =

2n∑
i=1

−1

|Γi|
∑
j∈Γi

log
exp(z̃i · z̃j/τ)∑2(m+n)

k=1,k 6=i exp(z̃i · z̃k/τ)
, (3)

where τ > 0 is a temperature hyperparameter. Note, that
all memory samples only act as negative contrasting pairs
to avoid overfitting. Without task or class labels, SCALE
distills the pairwise similarity pij and forms the pseudo-
positive set as:

Γi = {j ∈ {1, ..., 2n} | j 6= i, pij > µ} , (4)

where pij (defined later) indicates the pairwise similarity
among feature representations and µ > 0 is a hyperpa-
rameter as similarity threshold. Our contrastive loss is
unique and different from traditional contrastive loss func-
tions [15,32,40] due to the self-distilled pseudo-positive set
Γi, which maximizes the effectiveness of unsupervised rep-
resentation learning in an online setting.
Self-Supervised Forgetting Loss. To combat catastrophic
forgetting, we construct a self-supervised forgetting loss
based on the KL divergence of the similarity distribution:

Lforget =

2(m+n)∑
i=1

2(m+n)∑
j=1,j 6=i

−pij · log
pij

ppastij

, (5)

where pij , p
past
ij are the pairwise similarity among feature

representations {z̃i}2(m+n)
i=1 and

{
z̃pasti

}2(m+n)

i=1
, which are

mapped by the model θtu and frozen model θtu−1. To form
a valid distribution, we enforce the pairwise similarity of
a given instance to sum to one:

∑2(m+n)
j=1,j 6=i pij = 1,∀i ∈

{1, ..., 2(m+ n)}. The same rule applies to ppastij . In
SCALE, the learned knowledge is stored by pairwise sim-
ilarity. Hence penalizing the KL divergence of pairwise
similarity distribution from a past model can prevent catas-
trophic updates. As we are not aware of class or task bound-
aries, we use the frozen model from the previous batch.
Note, that a similar distillation loss is used in [12, 31, 46]
but for supervised or task-based lifelong learning.
Pairwise Similarity. Pairwise similarity is the key of
SCALE hence picking the suitable metric is of critical im-
portance. An appropriate pairwise similarity metric should



(i) consider the global distribution of all streaming and
memory samples, and (ii) sum to one for a given instance
as required by the forgetting loss. We adopt the symmetric
SNE similarity metric from t-distributed stochastic neigh-
bor embedding (t-SNE), which was originally proposed to
visualize high-dimensional data by approximating the sim-
ilarity probability distribution [73]:

pij =
pj|i + pi|j

2
, pj|i =

exp(z̃j · z̃i/κ)∑2(m+n)
k=1,k 6=i exp(z̃k · z̃i/κ)

, (6)

where κ > 0 is a temperature hyperparameter. Since the
form of Equation (6) is similar to Equation (3), in prac-
tice, the computation can be reused to improve efficiency.
The symmetric SNE similarity captures the global similar-
ity distribution among all features without using supervision
or prior knowledge.

4.2. Online Memory Update

The goal of online memory update is to retain the most
“representative” raw samples from historical streams to ob-
tain the best outcome in contrastive learning. One major
challenge is that the input streams are non-iid and pos-
sibly imbalanced. Existing work has proposed various
memory update strategies to extract the most informational
samples, e.g., analyzing interference or gradients informa-
tion [5, 7, 19, 38, 68]. However, most previous works rely
on class labels thus are not applicable in online ULL. With-
out labels and prior knowledge, we cannot make any as-
sumption (for example, clusters) on the manifold of the fea-
ture representations that are fed to memory update. Purush-
walkam et al. [59] were the first to bring up a similar prob-
lem setting and proposed minimum redundancy (MinRed)
memory update, prioritizing dissimilar samples without
considering the global distribution. Unlike MinRed, we
propose to perform distribution-aware uniform subset sam-
pling for memory update.

The input to memory update is the imbalanced combined
batch {xi}M+n

i=1 of the previous memory buffer {ei}Mi=1 and
streaming batch Xt

u. We first map the raw samples to the
feature space, i.e., zi = fθ(xi),∀i ∈ {1, ...,M + n}. Then
we select a subset of M samples from {zi}M+n

i=1 and store
the corresponding raw samples in the limited-size mem-
ory buffer, while discard the rest. Aiming at extracting
the representative samples from non-iid streams without su-
pervision, SCALE employs the Part and Select Algorithm
(PSA) [67] for uniform subset selection. PSA first performs
M partition steps which divide all samples into M subsets,
then picks one sample from each subset. Each step parti-
tions the existing set with the greatest dissimilarity among
its members, thus PSA selects a subset of samples with uni-
form distribution in the spanned feature space. To the best
of the authors’ knowledge, this is the first time using uni-
form subset selection in lifelong learning problems.

5. Evaluation
5.1. Experimental Setup

Datasets: We construct the online single-pass data
streams from CIFAR-10 (10 classes) [53], CIFAR-100 (20
coarse classes) [42] and a subset of TinyImageNet (10
classes) [21]. For each dataset, we construct five types of
streams: iid, sequential classes (seq), sequential classes
with blurred boundaries (seq-bl), sequential classes with
imbalance lengths (seq-im), and sequential classes with
concurrent classes (seq-cc).
Networks: For all datasets, we apply ResNet-18 [33] with
a feature space dimension of 512.
Baselines. Since SCALE uses an InfoNCE-based loss, we
compare with SimCLR [15] and SupCon [40] and the fol-
lowing lifelong learning baselines using SimCLR as back-
bone:
• From the group of supervised lifelong learning, we se-

lect PNN [66], SI [83] and DER [9] with necessary
modifications for online ULL.
• For task-based ULL, we use the source code of

CaSSLe [24] after removing the task labels.
• Finally, we also compare with STAM [69], using their

original data loader and parameters, and LUMP [49].
We did not compare with VAE-based methods such as [37,
62] since they are reported to scale poorly on medium to
large image datasets [23].
Metrics. We use spectral clustering with T as the number
of clusters and compute the ACC. kNN classifier is used to
evaluate the supervised accuracy with k = 50.

Implementation details of SCALE and baselines are pre-
sented in the Appendix. All memory methods use a buffer
of size M = 1280. The size of the sampled memory batch
is m = 128, which is the same as the size of the streaming
batch n. For the similarity threshold, we use an adaptive
threshold of mean + µ(max − mean) where mean and
max are the mean and max pairwise similarity in pij . With
an adaptive threshold, we alleviate the effects of variations
in absolute similarity. SCALE employs the Stochastic Gra-
dient Descent optimizer with a learning rate of 0.03.

5.2. Accuracy Results

Final Accuracy. The final ACC and kNN accuracy on all
datasets and all data streams are reported in Figure 4. Both
mean and standard deviation of the accuracy are reported
after 3 random trials. ACC values are generally lower than
their kNN counterparts. It should be noted that SCALE out-
performs all state-of-the-art ULL algorithms on almost all
streaming patterns, both in terms of ACC and kNN accu-
racy. In all settings in CIFAR-10, SCALE improves 1.69-
4.62% on ACC and 1.32-3.83% on kNN comparing with the
best performed baseline. For CIFAR-100, SCALE achieves
improvements of up to 2.15% regarding ACC and 2.77%



(a) CIFAR-10 iid (b) CIFAR-10 seq (c) CIFAR-10 seq-bl (d) CIFAR-10 seq-im (e) CIFAR-10 seq-cc

(f) CIFAR-100 iid (g) CIFAR-100 seq (h) CIFAR-100 seq-bl (i) CIFAR-100 seq-im (j) CIFAR-100 seq-cc

(k) TinyImageNet iid (l) TinyImageNet seq (m) TinyImageNet seq-bl (n) TinyImageNet seq-im (o) TinyImageNet seq-cc

Figure 4. SCALE improves kNN accuracy over the best state-of-the-art baseline by up to 3.83%, 2.77% and 5.86% kNN on CIFAR-
10, CIFAR-100 and TinyImageNet datasets. The figures show final accuracy results on five different streams sampled from CIFAR-10
(first row), CIFAR-100 (second row) and TinyImageNet (third row) datasets. For each data stream setting, the left figure displays ACC
while the right figure shows the kNN accuracy at the end of the stream. The red dashed line depicts the ACC or kNN accuracy of SupCon.

regarding kNN comparing with the best baseline. For Tiny-
ImageNet, SCALE enhances 0.2-3.33% on ACC and 2.53-
5.86% on kNN accuracy over the best baseline. Out of
all data streams, iid and seq-cc streams are easier to learn
while the single-class sequential streams are more challeng-
ing and result in lower accuracy. Our results demonstrate
the strong adaptability of SCALE which does not require
any prior knowledge about the data stream.
Baseline Performances. SimCLR produces low accuracy
as it is originally designed for offline unsupervised repre-
sentation learning with multiple epochs. Interestingly, the
supervised contrastive learning baseline, SupCon (shown
by red dashed line in Figure 4), does not always result in
superior accuracy and can be attributed to overfitting on
the limited memory buffer. Such result aligns with the re-
cent findings that self-supervisedly learned representations
are more robust than supervised counterparts under non-iid
streams [24, 47]. Among the techniques adapted from su-
pervised lifelong learning, DER achieves relatively good re-
sults on all datasets but is still not comparable with SCALE.
The recently proposed ULL module, CaSSLe , significantly
relies on task boundary knowledge to preserve the classifi-
cation semantics from previous tasks, thus showing poor re-
sults in our online ULL setup. LUMP utilizes a mixup data
augmentation technique and may not work well for certain

image datasets. STAM outperforms the rest of the baselines.
However, STAM utilizes a unique memory architecture and
cannot be fine-tuned for downstream tasks.
Accuracy Curve. To examine the dynamics of online learn-
ing, we summarize the kNN accuracy curves during training
on blurred sequential CIFAR-10 and CIFAR-100 streams in
Figure 5 (more results in the Appendix). We can observe
that SCALE enjoys gradually increasing kNN accuracy as
we introduce new classes, which demonstrates SCALE’s
ability to consistently learn new knowledge while consol-
idating past information, all without supervision or prior
knowledge. Most baselines are subject to collapse or forget-
ting, and are not able to distill or remember the knowledge
in online ULL. The expandable-memory baseline STAM is
incapable of learning without effective novelty detection.

5.3. Ablation Studies
Loss Functions. We experiment with various combina-
tions of contrastive loss and forgetting loss on the sequen-
tial streams, as shown in Table 2. Even with a replay buffer,
SimCLR and SupCon do not lead to satisfying results on on-
line ULL. Co2L [12] is a supervised lifelong learning base-
line using constrastive and forgetting losses. For fair com-
parison, we remove its dependence on class labels. With the
pseudo-supervised contrastive loss, SCALE gains 1.55% in



Figure 5. The average kNN accuracy during training on the
blurred sequential streams sampled from CIFAR-10 (left) and
CIFAR-100 (right) datasets. Each training trial contains 10k train-
ing steps while each class spans 1k steps.

Table 2. Average final kNN accuracy on the sequential streams,
under different combinations of loss functions.

Contrast Loss Forget Loss CIFAR-10 TinyImageNet

SimCLR [15] × 18.84 18.13
SupCon [40] × 23.83 15.67
Co2L [12] X 30.63 30.80

SCALE × 30.45 30.40
SCALE X 32.18 31.33

Table 3. Average final kNN accuracy on the imbalanced sequen-
tial streams using different memory update policies in SCALE.

Memory update CIFAR-10 CIFAR-100 TinyImageNet

w/ label 32.41 21.21 27.73

random 29.80 20.10 23.67
KMeans 31.59 22.15 29.07

MinRed [59] 23.66 19.75 25.13
PSA (this paper) 32.21 23.16 31.33

terms of kNN accuracy on CIFAR-10 compared to Co2L
with a traditional contrastive loss. With the forgetting loss,
SCALE gets 1.78% kNN accuracy gain on CIFAR-10.
Memory Update Policies. We experiment with SCALE
on the imbalanced sequential stream with different mem-
ory update policies and summarize the results in Table 3.
With the distribution-aware uniform PSA memory up-
date, SCALE surpasses the rest unsupervised strategies.
KMeans-based memory selection does not lead to the best
result on sequential streams as the representations are not
separable. MinRed [59] prioritizes dissimilar samples re-
gardless of global distribution, thus leads to biased selection
and degraded performance on imbalanced data. All compo-
nents of SCALE are necessary for the best overall learning
performance.

5.4. Hyperparameters

We experiment with the important parameters in
SCALE. The weight balancing coefficient λ plays an im-
portant role in the balance between pseudo-contrastive loss
and self-supervised forgetting loss in SCALE. The accuracy

Figure 6. Experiments of hyperparameters on CIFAR-10 streams
under various λ (left) and u (right).

on various CIFAR-10 streams after 3 random trials, under
various λ, are plotted in Figure 6 (left). In most settings,
λ = 0.1 produces the best results. A smaller λ places less
weight on the forgetting loss thus leads to forgetting; con-
versely, a larger λ may over-emphasize the memorizing ef-
fect and prevent learning meaningful representations.

The threshold u is critical in defining the pseudo-positive
set. The accuracy after 3 random trials on CIFAR-10
streams are shown in Figure 6 (right). The sensitivity to
threshold on iid and sequential streams is different. For
iid streams, each incoming batch contains diverse samples
from all classes. A higher threshold improves performance
by restricting the pseudo-positive set to near-by samples
that are more likely to belong to one class. For sequen-
tial streams, as the samples from the same batch are from
the same class, a positive but lower threshold helps filter
sufficiently similar samples into the pseudo-positive set, to
boost learning outcome.

6. Conclusion

Existing works in unsupervised lifelong learning assume
various prior knowledge thus are not applicable for learn-
ing in the wild. In this paper, we propose the online un-
supervised lifelong learning problem without prior knowl-
edge that (i) accepts non-iid, non-stationary and single-
pass streams, (ii) does not rely on external supervision,
and (iii) does not assume prior knowledge. We pro-
pose SCALE, a self-supervised contrastive lifelong learn-
ing technique based on pairwise similarity. SCALE uses a
pseudo-supervised contrastive loss for representation learn-
ing, a self-supervised forgetting loss to avoid catastrophic
forgetting, and an online memory update for uniform sub-
set selection. Experiments demonstrate that SCALE im-
proves kNN accuracy over the best state-of-the-art baseline
by up to 3.83%, 2.77% and 5.86% on all non-iid CIFAR-10,
CIFAR-100 and TinyImageNet streams.
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Appendix
In the supplementary, we include more details on the fol-

lowing aspects:

• In Section A, we list the implementation details
of SCALE, lifelong learning baselines and self-
supervised learning baselines, especially the hyper-
parameters for each dataset. For SCALE, we detail
the online memory update algorithm and compare with
MinRed [59].
• In Section B, we provide details on constructing data

streams in our online unsupervised lifelong learning
problem setup.
• In Section C, we show the accuracy curves during

training on all datasets. The accuracy curves of all life-
long learning baselines and SCALE are complemen-
tary to the results in Section 6 of the main paper.
• In Section D, we conduct sensitivity analyses on the

streaming batch size n and memory batch size m in
SCALE.
• In Section E, we conduct sensitivity analyses on the

temperature τ in our pseudo-supervised contrastive
loss. Different temperatures are ideal for iid and noniid
streams.
• In Section F, we present the t-SNE plots of the fea-

tures during periodic evaluation, which vividly demon-
strates SCALE’s learning process.
• In Section G, we analyze the computation time

complexity of SCALE, including all components of
pseudo-contrastive loss, forgetting loss and memory
update.

A. Implementation Details
A.1. Implementation Details of SCALE

We implement the pseudo-supervised contrastive learn-
ing component of SCALE based on the official SupCon

framework [40]. We use ResNet-18 [33] with a feature
space dimension of 512 as backbone. We use the Stochas-
tic Gradient Descent (SGD) optimizer with learning rate of
0.03. The hyperparameters across all datasets are summa-
rized in Table 4.

Table 4. Hyperparameters of SCALE across all datasets.

Param. Explain. Value

lr Learning rate 0.01
n Batch size for streaming data 128
M Memory buffer size 1280
m Sampled memory batch size 128
τ Temperature for pseudo-contrastive loss 0.1
µ Relative similarity threshold 0.05
λ Weight for self-supervised forgetting loss 0.1

Data augmentation. All methods except STAM share
the same augmentation procedure. For STAM, we use their
official data loader with custom pre-processing. During the
training phase, our data augmentation procedure first nor-
malizes the data using mean and variances. we apply ran-
dom scaling 0.2-1, random horizontal flip, random color jit-
ter of brightness 0.6-1.4, contrast 0.6-1.4, saturation 0.6-
1.4, hue 0.9-1.1, and random gray scale with p = 0.2 for
CIFAR-10 and CIFAR-100. For TinyImageNet, we apply
the random scaling 0.08-1 with random aspect ratio 0.75-
1.33 and bicubic interpolation. All images are resized to 32
× 32. During the evaluation phase, we only normalize the
data but do not use any augmentation for all datasets.

Uniform memory subset sampling. In SCALE, one
key component is the online memory update where we
adapt the uniform subset sampling algorithms. To achieve
the best performance in online unsupervised lifelong learn-
ing (ULL), the memory buffer is supposed to retain the most
“representative” samples regarding the historical distribu-
tion in the feature space. Uniform sampling mechanism is
desired to extract representative samples from the sequen-
tial imbalanced streams. To remind the readers, the in-
put to the memory update is the imbalanced combined fea-
tures {zi}M+n

i=1 projected by the latest model θtu from the
previous raw memory samples {ei}Mi=1 and latest stream-
ing batch Xt

u. The goal is to select a subset of M sam-
ples from {zi}M+n

i=1 then store the corresponding raw sam-
ples in the new memory buffer. We employ the Part and
Selection Algorithm (PSA) [67] in SCALE and adapt the
implementation from diversipy (https://github.
com/DavidWalz/diversipy). The implementation is
the slightly improved version from [76]. PSA is a linear-
time algorithm designed to select a subset of well-spread
points. The algorithm has two stages: first, the candidate
set {zi}M+n

i=1 is partitioned into M subsets, then one mem-
ber from each subset is selected to form the updated mem-
ory. During the first stage, each partition step selects the set

https://github.com/DavidWalz/diversipy
https://github.com/DavidWalz/diversipy


with the greatest dissimilarity among its members to divide.
The dissimilarity of a set A = {zi}M+n

i=1 is defined as the
maximum absolute difference among all dimensions:

aj := min
i=1,...,M+n

zij , bj := max
i=1,...,M+N

zij ,

∆j = bj − aj , j = 1, ...,K (7a)
øA := max

j=1,...,K
∆j (7b)

whereK denotes the dimension of the feature spaceZ . The
dissimilarity of A is the diameter of A in the Chebyshev
metric. During the second stage, PSA chooses the closest
member (in Euclidean metric) to the center of the hyperrect-
angle around Ai. The pseudocode and complexity analysis
of PSA are presented in [67] and [76]. The execution time
of PSA in our setup is discussed in Section G.

Comparison of MinRed and PSA (in SCALE). The
latest study by Purushwalkam et al. [59] proposed a mini-
mum redundancy (MinRed) memory update policy, which
assists buffer replay in self-supervised learning. When the
number of samples in the memory exceeds its capacity, they
rely on the cosine distance between all pairs of samples to
discard the most redundant one:

i∗ = arg min
i

min
j 6=i

dcos(zi, zj) (8)

Intuitively, MinRed is a greedy heuristic that keeps the most
“disimilar”M samples. The “dissimilarity” is judged by the
greatest distance from its closest selected feature. Although
MinRed is effective in retaining diverse samples, it does not
take into account global distribution and may lead to biased
selection on imbalanced incoming streams. This leads to
a degraded performance, as shown in Table 3 of the main
paper.

A.2. Implementation Details of Lifelong Learning
Baselines

The following lifelong learning baselines are used to
compare with SCALE:

• PNN [66]: Progressive Neural Network gradually ex-
pands the network architecture.
• SI [83]: Synaptic Intelligence performs online per-

synapse consolidation as a typical regularization tech-
nique.
• DER [9]: Dark Experience Replay retains existing

knowledge by matching the network logits across a se-
quence of tasks.
• STAM [69] uses online clustering and novelty detec-

tion to update an expandable memory architecture.
• CaSSLe [24] proposes a general framework that ex-

tracts the best possible representations invariant to task
shifts in ULL.

• LUMP [49] interpolates the current with the previous
samples to alleviate catastrophic forgetting in ULL.
Use SimCLR.

Note, that all methods except STAM are addable to self-
supervised learning backbones, while STAM employs a
unique expandable memory architecture. As SCALE lies
on the SimCLR backbone, we also experiment with the
above baselines on the SimCLR backbone for a fair com-
parison. We did not compare with VAE-based methods such
as [37, 62] since they have been reported to scale poorly on
large image datasets [23]. More implementation details are
grouped and summarized as follows:

• PNN, SI, DER, LUMP are adapted from the official
framework in [49] using their default hyperparameters.
PNN, SI and DER are originally designed for super-
vised lifelong learning but are adapted to ULL tasks as
described in [49]. For fair comparison, we use Sim-
CLR as the underlying contrastive learning backbone
for these baselines. For DER and LUMP, we use a re-
play buffer of the same size as SCALE.
• We take advantage of the official implementation of

STAM on CIFAR-10 and CIFAR-100 with their de-
fault hyperparameters. We use the original data loader
and parameters for CIFAR-10, CIFAR-100 as in the re-
leased code, and use our clustering and kNN classifier
on the learned embeddings.
• We use a modified version CaSSLe based on the orig-

inal implementation. Specifically, we remove task la-
bels and force the model to compare the representa-
tions of the current and previous batch.

B. Data Streams Construction
To remind the reader, we evaluated three image datasets:

CIFAR-10 (10 classes) [53], CIFAR-100 (20 coarse
classes) [42] and a subset of ImageNet (10 classes) [21].
We construct five single-pass data streams for training:

• iid stream: We sample 4096, 2560 and 500 images
from each class of CIFAR-10, CIFAR-100, and Tiny-
ImageNet, then shuffle all samples.
• Sequential class-incremental stream: We sample

4096, 2560 and 500 images from each class of CIFAR-
10, CIFAR-100, and TinyImageNet, then feed them
class-by-class to the model.
• Sequential class-incremental stream with blurred

boundaries: We sample the same number of im-
ages from each class as the standard sequential class-
incremental stream. We then mix the last 25% samples
of the previous class with the first 25% samples of the
next class, with a gradual mix probability between 0.05
and 0.5. Specifically, for samples closer to the bound-
ary, there is a higher probability to be exchanged with
a sample on the other side of the boundary.



• Sequential class-incremental stream with imbal-
anced class appearance: For each incrementally in-
troduced class, we randomly sample a subset with
more than half of the total samples in that class.
Specifically, suppose that there are U samples in that
class. We first uniformly sample an integer V ∈
[0.5U,U ], then we randomly sample V samples from
that class.
• Sequential class-incremental stream with concur-

rent class appearance: Similar as the sequential
class-incremental stream, we sample the same amount
of images from each class. We then group the classes
2-by-2 with its adjacent class, and shuffle all samples
in one group. In this way, each 2-class group is re-
vealed to the model incrementally, while the samples
in one group follow a random order.

For the evaluation dataset, we sample 500, 250 and 50 sam-
ples per class from the official validation dataset of CIFAR-
10, CIFAR-100 and TinyImageNet respectively.

C. Accuracy Curve during Training

The accuracy curves of all lifelong learning methods dur-
ing training are depicted in Figure 12, 13 and 14 for CIFAR-
10, CIFAR-100 and TinyImageNet respectively. Outstand-
ing from all methods, SCALE learns incrementally regard-
less of the iid or sequential manner. Compared to iid cases,
sequential data streams are more challenging, where more
baselines present the “forgetting” or unimproved trend as
new classes arrive. Among the three datasets, CIFAR-10
streams are easier to learn from. CIFAR-100 streams with
20 coarse classes act as the most challenging dataset where
multiple baselines collapse from the beginning. The 10-
class subset from ImageNet causes more fluctuations during
the online learning procedure.

D. Sensitivity Analyses of Streaming and Mem-
ory Batch Sizes

As indicated in multiple studies [18, 27, 82], batch size
has a significant impact on the performance of contrastive
learning methods, as a large number of samples are re-
quired to enhance the contrast effect. We study the impact
of streaming and memory batch sizes in SCALE. We first
fix the memory batch size m = 128 and alter the streaming
batch size upon iid and sequential CIFAR-10 streams. The
average final ACC and kNN accuracy after 3 random trials
are shown in Figure 7. It can be seen that the impact of
batch sizes on ACC and kNN accuracies is slightly differ-
ent. Compared to ACC, kNN accuracy behaves more stably
hence our discussion in the rest of the material mainly fo-
cuses on kNN accuracies. For iid streams, a larger batch
size leads to a higher kNN accuracy in SCALE, as more

Figure 7. Average ACC (left) and kNN accuracy (right) on iid
and sequential CIFAR-10 streams, with different batch sizes n and
memory batch size m = 128.

Figure 8. Average ACC (left) and kNN accuracy (right) on iid and
sequential CIFAR-10 streams, with different memory batch sizes
m and streaming batch size n = 128.

samples can be used for contrast. However, in the sequen-
tial case, SCALE is robust to batch sizes with less than 1%
difference in terms of kNN accuracy when using batch sizes
of 64, 96, 128 and 160. Such robustness can be attributed to
two reasons: (i) unlike SimCLR, we use small batch sizes
for the online learning scenarios, thus the effect of varying
batch sizes diminishes; (ii) for the sequential streams, the
contrasting samples mainly come from the memory buffer
(with different labels). Therefore a large batch size does not
greatly improve the contrastive learning performance.

We then fix the streaming batch size to n = 128 and
apply various memory batch sizes. The average ACC and
kNN accuracy of SCALE on 3 random CIFAR-10 streams
is shown in Figure 8. Interestingly, as the contrasting perfor-
mance of SCALE depends on both the streaming and mem-
ory samples, the effect of changing one of them is not sig-
nificant. When using memory samples of 64, 96, 128 and
160 on sequential streams, the different on ACC and kNN
accuracies are less than 0.7% and 1.35% respectively.

E. Sensitivity Analyses of Temperature τ

We setup MNIST following similar protocols in Sec-
tion B. Figure 9 reports the ACC at the end of iid and single-
class sequential data streams on MNIST, when choosing
various values for temperature τ in the contrastive loss
(Equation (3)) and temperature κ in the tSNE pseudo-
positive set selection (Equation (6)). It can be observed that
the type of data stream (i.e., iid or sequential) has a signifi-
cant effect on the best combinations of temperatures. Under
the iid datastream, high temperature of τ = 0.5 is preferred



Figure 9. Heatmap of final ACC on MNIST, iid stream (left) and
sequential class-incremental stream (right) using various tempera-
tures.

Figure 10. t-SNE plots on the evaluation dataset at the start (left),
middle (middle) and end (right) of training on iid data streams on
MNIST.

while κ has a small impact on the final ACC. However, in
the sequential case, temperature of τ = 0.1 or even smaller
is desired while κ in pseudo-positive set construction also
drives the final ACC. Intuitively, contrastive learning ben-
efits when there are more negative samples from the other
classes to compare against, where a large temperature value
works better. However, in online ULL scenarios, a lower
temperature τ with comparable κ shows better performance
in driving the closer samples together and memorizing the
similarity relationship.

F. t-SNE Plots during Training
To clearly visualize the challenges of learning from se-

quential incremental input versus iid input, we depict the t-
SNE plots on the feature space using the evaluation dataset
during training SCALE. The colors indicate ground-truth
class labels. As shown in Figure 10, under iid data streams
on MNIST, all classes are quickly separated as the middle-
stage t-SNE plot already demonstrates the distinguished
class distribution in the feature space. On the contrary, due
to the lack of labels and balanced data input, distinguishing
and memorizing various classes under class-incremental in-
put is much more difficult as shown in Figure 11. SCALE is
able to extract obvious class patterns and discriminate one
class versus the others by the kNN classifier.

G. Time Complexity of SCALE
Time complexity of loss functions. We analyze the

computation complexity of SCALE and compare with state-
of-the-art lifelong learning method.

• Co2L [12] is the state-of-the-art supervised lifelong

Figure 11. t-SNE plots on the evaluation dataset at the start (left),
middle (middle) and end (right) of training on sequential data
streams on MNIST.

learning method using contrastive loss and forgetting
loss. Both losses depend on the pairwise similarity
between all streaming and memory representations.
Hence after the forward propagation, the computation
complexity of computing the losses is O((m + n)2),
where m and n refer to the memory and streaming
batch size respectively.
• SCALE utilizes the pseudo-contrastive loss and for-

getting loss, both based on pairwise similarity and the
computation can be reused. Therefore, the computa-
tion complexity to compute the losses in SCALE is the
same as Co2L, both being O((m + n)2). Moreover,
SCALE consumes less time and resource than CaSSLe
without the predictor.

We measure the execution time per batch on a Linux
desktop with Intel Core i7-8700 CPU at 3.2 GHz and 16 GB
RAM, and a NVIDIA GeForce 3080Ti GPU. The settings
are the same as the implementation details in Section A.
The results in Table 5 show that SCALE consumes nearly
the same time as Co2L. The computation time of Co2L
and SCALE is directly affected by the combined batch size
m+ n, which supports our analyses.

Table 5. Average computation time (in seconds) of losses per batch
in Co2L, CaSSLe and SCALE on CIFAR-10, using various batch
sizes.

n m Time (s)
Co2L SCALE

128 128 0.050 0.051
64 128 0.034 0.035

128 64 0.034 0.035

Time complexity of memory update. SCALE employs
the PSA to select a uniformly distributed subset. We mea-
sure the execution time per memory update of random se-
lection, KMeans-based selection, MinRed [59] and PSA on
the same machine. The results are summarized in Table 6.
The configurations are the same as described in Section A.
PSA is only slower than the random baseline and exe-
cutes faster than KMeans-based selection and MinRed. The
KMeans-based selection performs KMeans clustering on all
latent features and then runs a random update within each



cluster. We implement KMeans using the scikit-learn
library [56] with k equal to the ground-truth number of
classes. In our setting, KMeans is not ideal as it not only
uses prior knowledge of the number of class, but is not com-
putationally efficient due to its iterative nature. MinRed
as a greedy heuristic needs to evaluate all candidates in a
sample-by-sample manner. In our implementation, MinRed
is 10% slower than PSA.

While the memory update seems to take much longer
time compared to computing loss values, we remind the
reader that all above memory selection mechanisms are de-
ployed on CPU, and do not utilize the acceleration capabil-
ity of GPU. In the future, we plan to re-implement the code
to convert to a GPU version.

Table 6. Average computation time (in seconds) per memory up-
date on CIFAR-10, using various memory update policies.

random KMeans MinRed [59] PSA

Time (s) 0.40 1.51 1.05 0.95

(a) CIFAR-10 iid

(b) CIFAR-10 seq

(c) CIFAR-10 seq-bl

(d) CIFAR-10 seq-im

(e) CIFAR-10 seq-cc

Figure 12. ACC and kNN accuracy curve on all streams sampled
from CIFAR-10 using various lifelong learning baselines.



(a) CIFAR-100 iid

(b) CIFAR-100 seq

(c) CIFAR-100 seq-bl

(d) CIFAR-100 seq-im

(e) CIFAR-100 seq-cc

Figure 13. ACC and kNN accuracy curve on all streams sampled
from CIFAR-100 using various lifelong learning baselines.

(a) TinyImageNet iid

(b) TinyImageNet seq

(c) TinyImageNet seq-bl

(d) TinyImageNet seq-im

(e) TinyImageNet seq-cc

Figure 14. ACC and kNN accuracy curve on all streams sampled
from TinyImageNet using various lifelong learning baselines.
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