

Reliability-Driven Deployment in Energy-Harvesting Sensor Networks

Xiaofan Yu¹, Xueyang Song¹, Ludmila Cherkasova², Tajana Šimunić Rosing¹

¹ University of California San Diego ² Arm Research

System Energy Efficiency Lab

seelab.ucsd.edu

Around 24.6 billion IoT connections will be established over the globe in 2025¹.

Smart Environment

Smart Agriculture

Smart City

Smart Electricity

^{1.} Ericsson Mobility Report, June 2020, https://www.ericsson.com/en/mobility-report/reports.

Operational Costs of IoTI

Network communication

33-50 percent

- Monthly/device subscription fee
- Monthly/device overage fee

Administrative labor

20-50 percent

- Every deployed device requires at least 15 interactions/year
- Each interaction takes at least 5 minutes

Technical support

10-33 percent

- 10% of deployed devices require support
- T1 MTTR: 25 minutes
- T2 MTTR: 3 to 5 hours

Time to market

- Time to provision devices and services
- Testing devices and services before deployment

Maintenance Costs! ~30%-83% of total costs!

Managing
Provisioning
Monitoring

Diagnose Repair Replacement

^{1.} The Hidden Costs of Delivering IIoT Services, Cisco Jasper, Apr. 2016, https://www.cisco.com/c/dam/m/en_ca/never-better/manufacture/pdfs/hidden-costs-of-delivering-iiot-services-white-paper.pdf.

Energy-Harvesting Sensor Networks

- Lifetime bottleneck can be addressed by energy harvesting techniques
- Energy-Neutral Operation:
 Energy consumption is less than harvested energy income.
- However, all subsystems age and degrade, ultimately requiring repair or replacement

High Performance Wireless Research & Education Network (HPWREN)¹

Reliability factors are overlooked in previous works!

Previous Works

- Sensor deployment for energy-harvesting sensor networks
 - [Yang 2016]: The first work adding Energy-Neutral Operation as a constraint
 - [Zhu 2018]: Directional sensors nodes with varying solar-panel sizes
 - (+) Paved way for sensor deployment problem in energy-harvesting sensor networks

- (-) Neither of them considered reliability, which causes striking differences in outdoor environments!
- Reliability-oriented deployment in sensor networks
 - **k-coverage**: each target is covered by at least **k sensors** [Gupta 2016].
 - m-connectivity: each node is connected to at least m other nodes [Gupta 2016].
 - (-) Redundancy only temporarily mitigates the negative influences of failures!

Reliability Models: Electronics Mean-Time-to-Failure (MTTF) Model

- The bathtub curve characterizes 3 types of devices failures in different stages:
 - Initial burn-in failures <- manufacture imperfections
 - Final wear-out failures <- aging and wear-out
 - Random failures during useful lifetime <- failure rates depend on core temperature
- Mean-time-to-failure models consider different failure mechanisms [Srinivasan 2004]:
 - Time-dependent dielectric breakdown (TDDB)
 - Negative bias temperature instability (NBTI)
 - Hot Carrier Injection (HCI)

The bathtub curve

Exponential Temperature Factor!

Share a similar form with different constant c:

$$MTTF = c \exp\left(\frac{E_a}{kT_c}\right)$$

Reliability Models: Battery State-of-Health Model

- State of Charge (SoC): available charge
 State of Health (SoH): aging level
- Lifetime of a rechargeable battery is the time when its SoH reduces from 1 to 0.8 [Xu 2018]

• We focus on calendar aging for long-term SoH [Xu 2018]:

$$SoH(t, T_{cell}) = \exp \left\{ -k_t t \exp \left[k_T T_{ref} \left(1 - T_{ref} \left(T_{cell} \right) \right] \right\} \right\}$$

1Ah battery, 10 mA current draw, 30 °C

t: elapsed time, k_t , k_T : predetermined constants, T_{ref} : reference temperature, T_{cell} : cell temperature

Reliability Models: Core Temperature Conversion

What we have so far...

Electronics MTTF Model

$$MTTF = c \exp\left(\frac{E_a}{kT_c}\right)$$

Battery SoH Model

$$SoH(t, T_{cell}) = \exp \left\{ -k_t t \exp \left[k_T T_{ref} \left(1 - T_{ref} \left(T_{cell} \right) \right] \right\} \right\}$$

Converting ambient temperature to core temperature [Beneventi 2014]

$$T_c[t+1] = AT_c[t] + BP[t] + CT_{amb}[t]$$
.

- T_c : Core temperature
- *P* : Average power
- T_{amb} : Ambient temperature
- A, B, C: constant parameters obtained from experiments

Different for different device/battery types!

Reliability-Driven Energy-Harvesting Sensor Deployment See

- How to deploy sensor and relay nodes, such that
 - A given set of targets are covered
 - All nodes are connected to the sink
 - Energy-neutral operation is attained at every node
 - Reliability constraints are met at every node

Exponentially accelerated in hightemperature environment!

Our Contributions

- To the best of our knowledge, we are the first to integrate state-of-the-art reliability models for energy-harvesting sensor deployment
- We formulate a Mix-Integer Linear Program (MILP) after converting the nonlinear reliability bounds to linear power bounds
- We offer a greedy heuristic named <u>Reliability-driven Two-Stage Heuristic</u> (R-TSH) and evaluate on real-world datasets

Problem Formulation

- Given information
 - a set of targets to monitor
 - a set of candidate grid points
 - solar radiation distribution over the field
 - ambient temperature distribution over the field
- Variables
 - Sensor/relay nodes deployment among the candidate grid points
 - Flow rate between each deployed node
- How to deploy the <u>minimum</u> sensors while satisfying
 - K-coverage
 - Complete connectivity
 - Energy-neutral operation
 - Reliability constraints

- P_i : Power of device i
- R_i : Harvested energy incoming rate of device i
- $MTTF_i$: Mean time to failure of device i
- $MTTF_{th}$: Predetermined MTTF threshold
- SoH_i : Battery SoH at i after specific time
- SoH_{th} : Predetermined SoH threshold

Reliability Metrics under Temperature Variations Over Time See

Spatial temperature variation

Temporal temperature variation

Cumulative distribution of temperature over time

Our method:

Integral on temperature distribution over time to compute MTTF and battery SoH at each location

se

Converting Reliability Bounds to Power Bounds

Recall...

Electronics MTTF Model

$$MTTF = c \exp\left(\frac{E_a}{kT_c}\right)$$

Battery SoH Model

$$SoH(t, T_{cell}) = \exp \left\{ -k_t t \exp \left[k_T T_{ref} \left(1 - T_{ref} \left(T_{cell} \right) \right] \right\} \right\}$$

Converting ambient temperature to core temperature

$$T_c[t+1] = AT_c[t] + EP[t] + CT_{amb}[t].$$

There is an one-to-one mapping between power and MTTF/SoH

Our method:

Use Binary Search Algorithm to locate the corresponding power bounds to meet reliability bounds

$$P_i \le \min \left\{ R_i, P_{SoH,i}, P_{MTTF,i} \right\}$$

- $P_{SoH,i}$: Equivalent power bound for SoH
- $P_{MTTF,i}$: Equivalent power bound for MTTF

- With the above transformations, the formulated problem turns into a MILP
- NP-complete
- Solved optimally on small cases.

$$\min \sum_{i \in N} x_i \tag{6}$$

subject to

$$\sum_{i \in N} s_i \cdot cov(i, j) \ge K, \quad \forall j \in O$$
 (7a)

$$s_i \eta G + \sum_{j \in \Gamma_i} f_{ji} = \sum_{j \in \Gamma_i} f_{ij} + f_{iB}, \quad \forall i \in \mathbb{N}$$
 (7b)

$$\sum_{i \in \Gamma_B} f_{iB} = \sum_{i \in N} s_i \eta G \tag{7c}$$

$$s_i \le x_i, \quad \forall i \in N$$
 (7d)

$$\sum_{j \in \Gamma_i} f_{ij} \le \gamma x_i, \quad \forall i \in N \tag{7e}$$

$$P_i = P_0 + s_i E_s \eta + \sum_{j \in \Gamma_i} \left(P_{tx}(d_{ij}) \frac{f_{ij}}{BW} + P_{rx} \frac{f_{ji}}{BW} \right), \ \forall i \in N$$
 Power Model

$$P_i \le \min\left\{R_i, P_{SoH,i}, P_{MTTF,i}\right\}, \quad \forall i \in N \tag{7g}$$

$$x_i \in \{0, 1\}, s_i \in \{0, 1\}, \quad \forall i \in N$$
 (7h)

$$0 \le f_{ij} \le \gamma, \quad \forall i \in N, j \in N, i \ne j$$
 (7i)

K-coverage

Complete Connectivity

Validation

Power & Reliability

Constraints

Reliability-Driven Two-Stage Heuristic (R-TSH)

- Due to the NP-completeness of the problem, we propose a greedy heuristic named R-TSH to approximate the optimal solution in large-scale cases.
- Stage 1: Sensor nodes selection
 - Greedily select sensor nodes based on coverage and power/ reliability bounds
- Stage 2: Communication path (i.e., relay nodes) selection
 - Construct directed graph and search for the shortest path tree
 - The weights are defined based on number of nodes and power/reliability bounds

Experimental Setup

- The optimal solver is implemented in CPLEX 12.10 and the heuristic is implemented in MATLAB R2020a¹
- Linux desktop with Intel Core i7-8700 CPU at 3.2 GHz and 16-GB RAM
- Solar radiation and temperature data from National Solar Radiation Database (NSRDB)²
 - $100 \text{ km} \times 100 \text{ km}$, from Jan. 1 2019 to Jan. 1, 2020
- Average results after 10 trials of randomly initialized target locations
- Baselines
 - TSH [Zhu 2018]: The original two-stage heuristic
 - SRIGH [Zhu 2018]: Sensing- and routing- integrated greedy heuristic
 - **OPT**: The optimal solution with reliability constraints
 - OPT_{noRel}: The optimal solution without reliability constraints

^{1.} Source code is available at https://github.com/Orienfish/EH-deploy.

^{2.} National Solar Radiation Database (NSRDB), https://maps.nrel.gov/nsrdb-viewer/.

Simulation Results on a Small-Scale Problem

- OPT vs. OPT_{noRel}: OPT deploys 14% more nodes than OPT_{noRel} but the latter causes more than 30% of reliability violations
- R-TSH vs. OPT: R-TSH deploys 20% more nodes than OPT but is 1500x faster
- **R-TSH vs. baseline heuristics:** R-TSH places 6% and 25% more nodes than TSH and SRIGH, respectively, but does not violate any reliability restrictions.

Simulation Results on a Large-Scale Problem

- Various number of Point-of-Interests (Pols): R-TSH places 10% 20% more nodes than SRIGH but both SRIGH and TSH result in 20% or more reliability violations
- **Various Number of candidate locations:** At the same time, R-TSH consistently keeps the violation rates below 3% while requires 15% 25% more nodes than **SRIGH**

Simulation Results on a Large-Scale Problem (Cont.)

Execution Time:

- R-TSH and TSH share similar execution-time pattern, which scales linearly when we increase the number of candidate locations.
- SRIGH presents a different pattern that scales linearly when we increase the number of Pols.

Conclusion

- We integrate state-of-the-art reliability models to sensor deployment in energyharvesting sensor networks
 - We use electronics MTTF model and battery SoH model, both incorporating the exponential temperature factor
- We formulate a sensor deployment problem optimizing for minimum nodes while satisfying (i) k-coverage, (ii) complete connectivity, (iii) energy-neutral operation, (iv) reliability constraints
- We devise a <u>Reliability-Driven Two-Stage Heuristic</u> (R-TSH) to approximate the optimal solution in large-scale problems
- Simulation results show that our heuristic meets all reliability constraints with only 20% more sensors than the optimal solution in a small field
- Compared to state-of-the-art heuristics, R-TSH avoids 20% 80% of reliability violations with a comparable number of nodes and execution time.

Thanks!

Questions?

System Energy Efficiency Lab seelab.ucsd.edu

References

- Yang, Changlin, and Kwan-Wu Chin. "On nodes placement in energy harvesting wireless sensor networks for coverage and connectivity." *IEEE Transactions on Industrial Informatics* 13.1 (2016): 27-36.
- Zhu, Xiaojian, Jun Li, and MengChu Zhou. "Optimal deployment of energy-harvesting directional sensor networks for target coverage." *IEEE Systems Journal* 13.1 (2018): 377-388.
- Gupta, Suneet Kumar, Pratyay Kuila, and Prasanta K. Jana. "Genetic algorithm approach for k-coverage and m-connected node placement in target based wireless sensor networks." *Computers & Electrical Engineering* 56 (2016): 544-556.
- Beneventi, Francesco, et al. "An effective gray-box identification procedure for multicore thermal modeling." IEEE Transactions on Computers 63.5 (2012): 1097-1110.
- Srinivasan, Jayanth, et al. "The case for lifetime reliability-aware microprocessors." ACM SIGARCH Computer Architecture News 32.2 (2004): 276.
- Xu, Bolun, et al. "Modeling of lithium-ion battery degradation for cell life assessment." IEEE Transactions
 on Smart Grid 9.2 (2016): 1131-1140.