

Xiaofan Yu¹, Weihong Xu¹, Ludmila Cherkasova², Tajana Šimunić Rosing¹

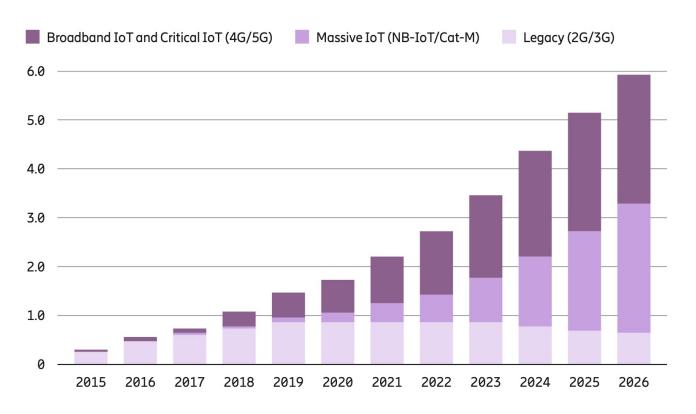
¹ University of California San Diego
 ² Arm Research

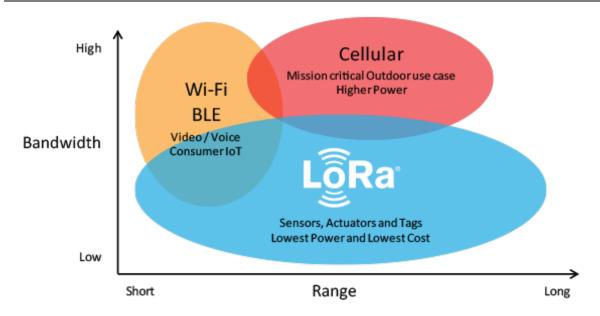
CNSM 2021

UC San Diego

JACOBS SCHOOL OF ENGINEERING
Computer Science and Engineering

IoT Connections Outlook¹




Figure 15: IoT connections (billion)

IoT	2020	2026	CAGR
Wide-area IoT	1.9	6.3	22%
Cellular IoT ²	1.7	5.9	23%
Short-range IoT	10.7	20.6	12%
Total	12.6	26.9	13%

Cellular IoT connections by segment and technology (billion)

Why Long-Range (LoRa)?

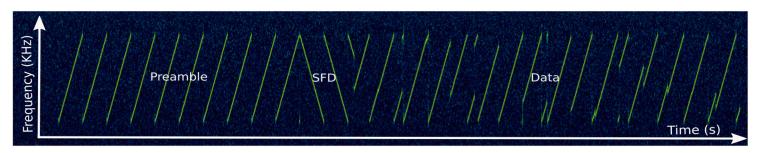
- Large coverage
- Ultra-low power
- Multiple access
- Cost effective
- License free

LoRa is suitable for large-scale sensing applications

Smart Environment

Smart City

Smart Agriculture


Smart Electricity Metering

1. Figure source: https://www.semtech.com/lora/why-lora.

Background of LoRa Communication

LoRa adopts Chirp Spreading Spectrum (CSS) modulation [Liando 2019]

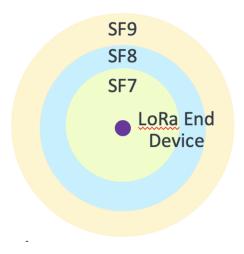
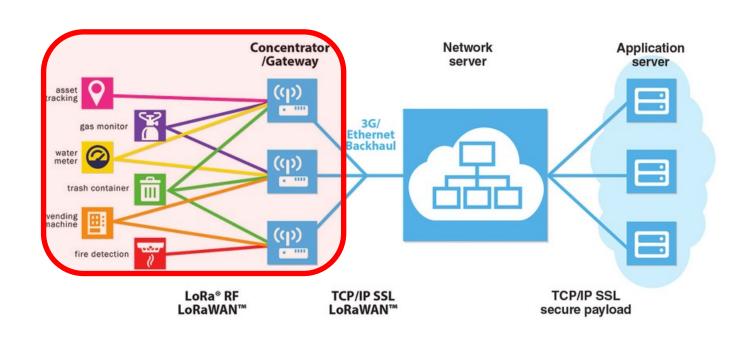



Fig. 1. A snapshot of LoRa transmission that shows up, down, and data chirps as seen on spectrogram.

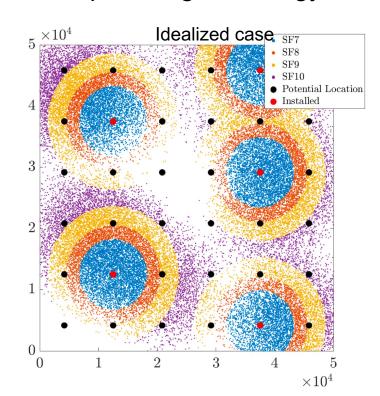
- Important transmission parameters
 - Spreading Factors (SF): Number of bits crammed into a single chirp, "slope" of signal.
 - Signals using different SFs are orthogonal **Higher SNR** Greater sensitivity and range Higher SF Gentle "slope" More collisions and energy Longer airtime consumption
 - **Channel:** Different frequency sub-band
 - Signals using different channels are orthogonal
 - **Transmission Power (Tx Pow):** Signals with higher Tx Power have higher chances of being received in spite of attenuation

- Single-hop network
- No end device-gateway association
- Aloha medium-access mechanism

- Traditional reliability-driven design in IoT networks
 - M-connectivity: each node has m distinct networking paths to cloud [Gupta 2016]
 - (-) Traditional reliability-driven strategies does not apply to LoRa networks!

Previous Works

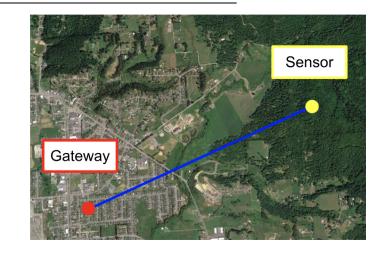
LoRa networks optimization

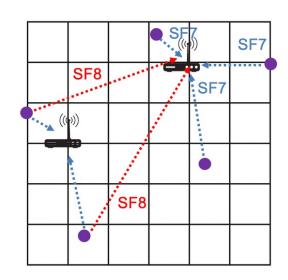

 Assign transmission parameters to maximize transmission reliability (i.e., packet delivery ratio) or energy efficiency [Reynders 2017][Gao 2019]

Gateway placement and transmission parameters configuration optimizing for energy

efficiency [Ousat 2019] Most related!

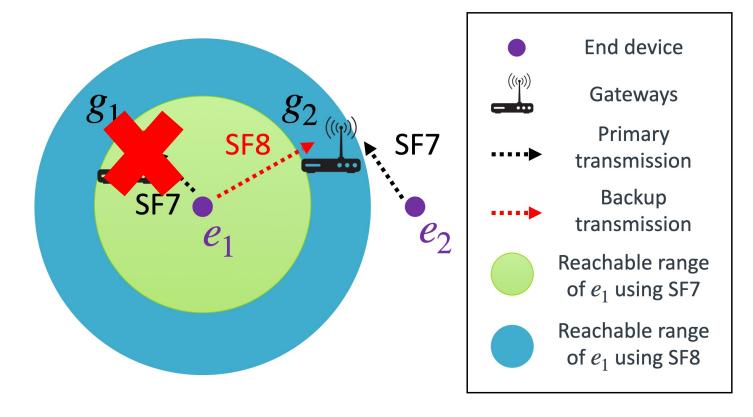
(+) First to study joint gateway placement and device configuration given sensors' locations

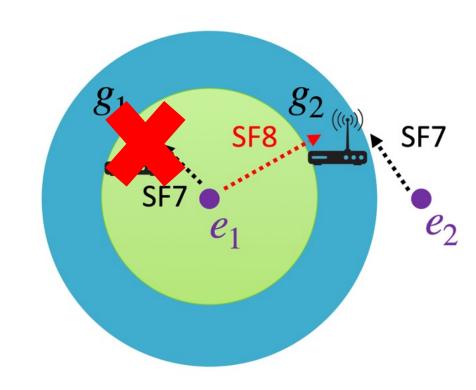

- (-) Gateway number needs to be specified
- (-) Theoretical path loss models with uniform degradation on various directions
- (-) Poor fault tolerance with single connectivity at each end device



Our Contributions: Reliability and Fault Tolerance

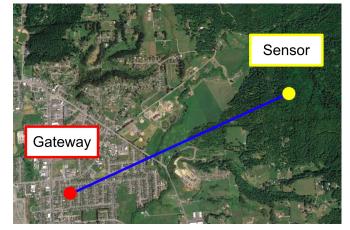
- We introduce m-gateway connectivity to guarantee fault tolerance (against gateway failures and interference) under LoRaWAN protocol
- We leverage land cover-based path loss estimation from remote sensing for practical reliability evaluation
- Given end devices' locations, we formulate an Integer Nonlinear Programming (INLP) for joint gateway placement and resource allocation
 - Optimizing for minimum gateway number
 - Under transmission reliability, fault tolerance and lifetime constraints
- We propose a greedy heuristic, RFT-LoRa, to acquire high-quality solutions for large-scale problems

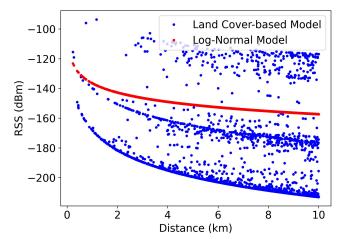


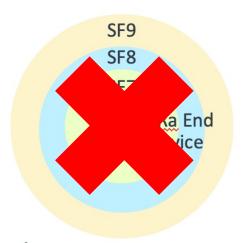

- M-connectivity does not apply to single-hop LoRa networks
- We introduce *m-gateway connectivity* to guarantee fault tolerance in LoRa networks
 - *M-gateway connectivity*: a LoRa end device is able to reach *m* gateways

M-Gateway Connectivity for LoRa Networks (Cont.)

- Benefits of m-gateway connectivity
 - Fault tolerance: Provide backup connectivity in case of gateway failures or strong interferences
 - Less unnecessary collisions: Backup gateways are normally not reachable
 - Savings on total number of installed gateways:
 Backup gateways can serve as the primary gateways for other sensors
 - Enabled automatically with the latest LoRaWAN protocol


Land Cover-based Path-Loss Model with Remote Sensing


 Previous works optimizing LoRa networks leverage Friis or log-normal path-loss model [Reynders 2017][Gao 2019] [Ousat 2019]


$$PL(d) = \overline{PL(d_0)} + 10nlog\left(\frac{d}{d_0}\right) + N_{\sigma}$$

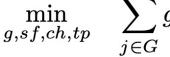
d: tx distance, d_0 : reference distance, n: path loss exponential, N_{σ} : zero-mean Gaussian noise

- Path loss over different land covers (e.g., buildings, forests) can be largely different
- We leverage the remote sensing-based model in [Lin 2020]
 - Fit n, σ for different land covers through real-world experiments
 - Propose path-loss estimation algorithm based on remote sensing

(5c)

Problem Formulation: Reliability and Fault Tolerance

- Given
 - A set of end devices and path-loss matrix
- Variables
 - Gateway placement
 - Transmission parameters allocations, i.e., SF, channel, TX Power
- How to deploy <u>minimum</u> gateways while satisfying
 - Transmission reliability constraint
 - Lifetime constraint
 - M-gateway connectivity constraint



N.PL

$$g_j = \begin{cases} 1 & \text{if a gateway is placed at } j \\ 0 & \text{otherwise.} \end{cases} \forall j \in G$$

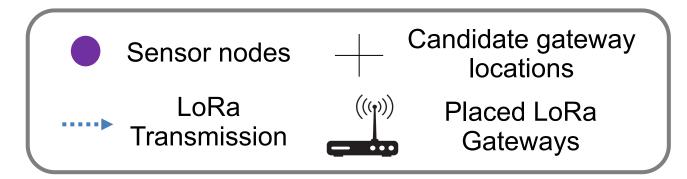
$$sf_i \in SF, \quad \forall i \in N, \quad SF = \{0, 1, 2, 3\}, \\ ch_i \in CH, \quad \forall i \in N, \quad CH = \{0, 1, 2, 3, 4, 5, 6, 7\}, \\ tp_i \in TP, \quad \forall i \in N, \quad TP = \{0, 1, 2, 3, 4, 5\}.$$

$$\sum_{i \in C} g_j \tag{5a}$$

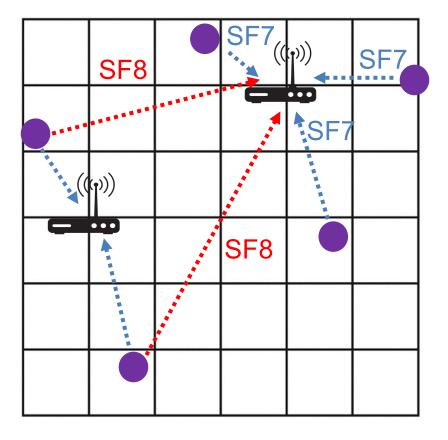
s.t.
$$PDR_i(g, sf, ch, tp) \ge PDR_{th}, \quad \forall i \in N$$
 (5b)

$$L_i\left(sf_i,tp_i\right) \geq L_{th}, \quad \forall i \in N$$

$$\sum_{j \in G} g_j c_{ij} \ge M, \quad \forall i \in N \tag{5d}$$


$$g_j \in \{0, 1\}, \quad \forall j \in G \tag{5e}$$

$$sf_i \in SF, ch_i \in CH, tp_i \in TP, \forall i \in N$$
 (5f)


Integer Nonlinear Programming (INLP)

Reliable and Fault-Tolerant LoRa Networks (RFT-LoRa)See

- In each iteration, RFT-LoRa attempts to place a gateway at every unoccupied location, and greedily assigns SF, channel, and Tx Power to all end devices based on the current deployment
- Pick the location with the most "benefit"
- Repeat until *m-gateway connectivity* is met

2-gateway connectivity

Reliable and Fault-Tolerant LoRa Networks (Cont.)

Benefit of each candidate gateway location:

$$B = \sum_{i \in N} \omega_1 \underline{PDR_i} + \omega_2 \underline{L_i} + \min\left(\underline{Conn_i - M}, 0\right).$$

Benefit on transmission reliability

Benefit on Lifetime

Penalty for unsatisfied mgateway connectivity

• Time complexity of RFT-LoRa is $O(M|N|^3|G|^2)$

M: m-gateway conn., N: given end devices locations,

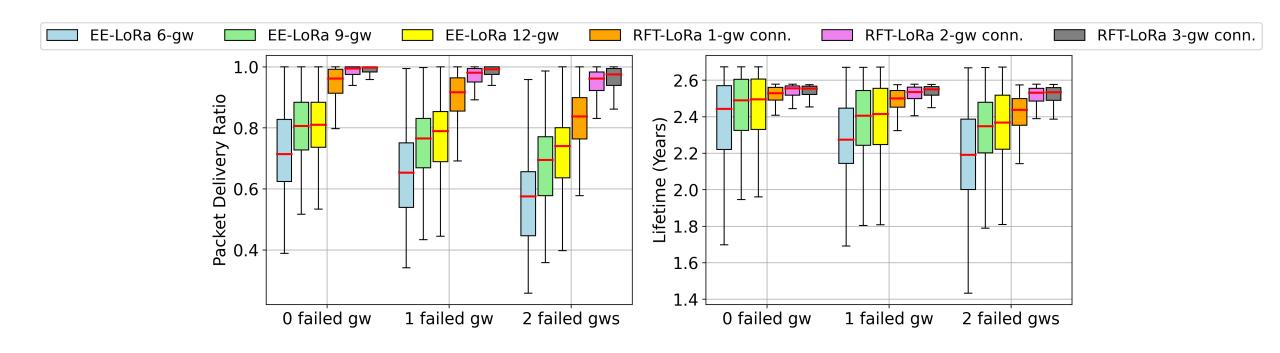
G: candidate gateway locations

Simulation Setup

- We implement our algorithms in Python 3.7¹ and evaluate in ns-3, with open-source LoRaWAN module [Magrin 2019]
- Baselines
 - **EE-LoRa** [Ousat 2019]: energy efficiency-driven gateway placement and resource allocation
 - **OPT**_{relax}: relaxation with continuous variables, solved optimally with SNOPT²
- Three evaluating scenarios:

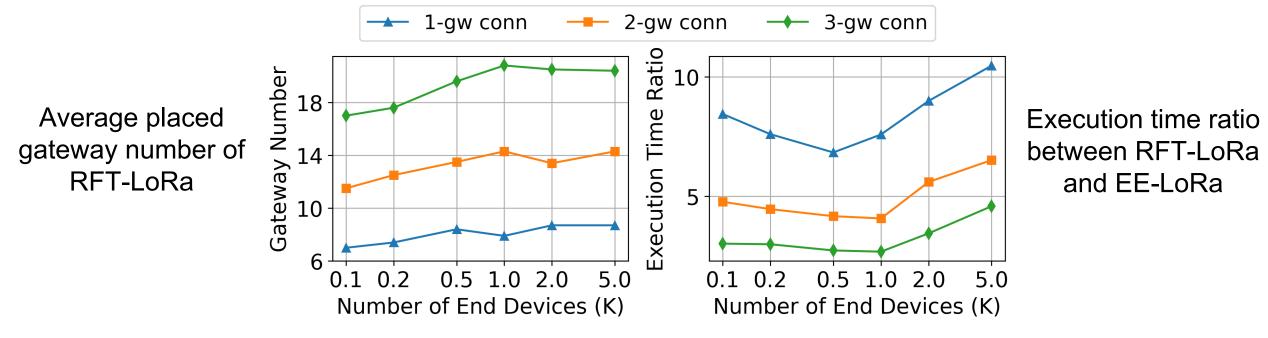
Scenario	End devices	Candidate gateways	Area	Path loss model
Small region	100 randomly initialized devices	25	30 km × 30 km	Log-normal
Large region	264 devices from PurpleAir ³	216	60 km × 100 km in Southern California	Land cover-based
Scalability study	Up to 5K randomly initialized devices	64	50 km × 50 km	Log-normal

- 1. Source code is available at https://github.com/Orienfish/robust-lora
- 2. SNOPT 7.7, https://ccom.ucsd.edu/~optimizers/static/pdfs/sndoc7.pdf
- PurpleAir: real-time air quality monitoring, https://www2.purpleair.com/



Method	Gateway Number	Min PDR	Min Lifetime (Year)	Execution Time (Sec)
Relaxed Opt.	2.92	0.76	1.9	2953
EE-LoRa	3	0.55	1.6	0.3
RFT-LoRa	3	0.73	1.8	1.8

- Take average results after 5 trials of random end-device initializations
- RFT-LoRa approximates the relaxed gateway number with similar packet delivery ratio (PDR) and lifetime, and executes 1640x faster on this toy example
- EE-LoRa takes less than a second to finish but has the worst PDR because EE-LoRa only proportionally distributes the available resources without performance guarantees


Simulation Results on the Large Region in ns-3

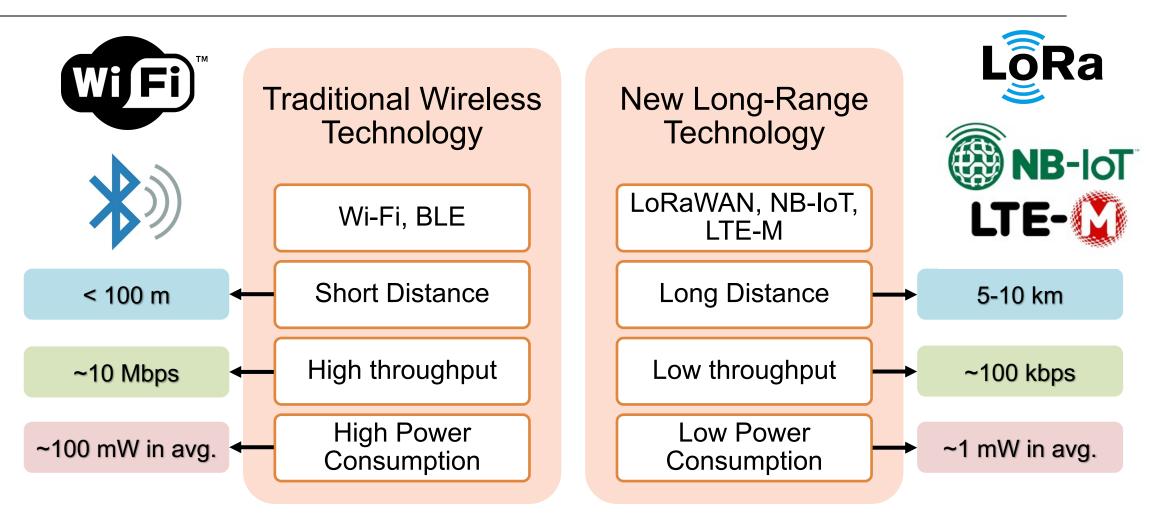
- RFT-LoRa places 6, 9 and 12 gateways under 1-, 2- and 3-gateway connectivity
- RFT-LoRa enhances 22%-106% on packet delivery ratio, 4%-10% on lifetime compared with EE-LoRa (w/ same gateway number) during gateway failures and interferences

Scalability of RFT-LoRa on Large Problems

- Take average results after 10 trials of random end-device initializations
- RFT-LoRa requires only 1.2x 1.5x more gateways instead of 2x when switching from 1- to 3-gateway connectivity
- RFT-LoRa takes at most 38 minutes for 5K end devices while EE-LoRa consumes only 10 minutes

Conclusion

- We propose new approach to design reliable and fault-tolerant LoRa networks
 - Reliability: we use land cover-based path-loss model based on remote sensing
 - Fault Tolerance: we introduce m-gateway connectivity for LoRa networks
- We formulate INLP to minimize the number of gateways through strategic gateway
 placement and resource allocation, while satisfying reliability, fault tolerance and
 lifetime constraints
- A greedy heuristic RFT-LoRa is proposed to search high-quality solutions in largescale problems
- Simulation results show that RFT-LoRa approximates the gateway number of the relaxed problem with similar reliability, executing 1640x faster.
 RFT-LoRa presents better fault tolerance than existing works during gateway failures and interferences.


References

- [1] Lee, Jin-Shyan, Yu-Wei Su, and Chung-Chou Shen. "A comparative study of wireless protocols: Bluetooth, UWB, ZigBee, and Wi-Fi." *IECON 2007-33rd Annual Conference of the IEEE Industrial Electronics Society*. Ieee, 2007.
- [2] Ghena, Branden, et al. "Challenge: Unlicensed LPWANs Are Not Yet the Path to Ubiquitous Connectivity." The 25th Annual International Conference on Mobile Computing and Networking. 2019.
- [3] Liando, Jansen C., et al. "Known and unknown facts of LoRa: Experiences from a large-scale measurement study." ACM Transactions on Sensor Networks (TOSN) 15.2 (2019): 1-35.
- [4] Lavric, Alexandru, and Valentin Popa. "Performance evaluation of LoRaWAN communication scalability in large-scale wireless sensor networks." Wireless Communications and Mobile Computing 2018 (2018).
- [5] Reynders, Brecht, Wannes Meert, and Sofie Pollin. "Power and spreading factor control in low power wide area networks." 2017 IEEE International Conference on Communications (ICC). IEEE, 2017.
- [6] Gao, Weifeng, et al. "Towards energy-fairness in LoRa networks." 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). IEEE, 2019.
- [7] Ousat, Behnam, and Majid Ghaderi. "LoRa Network Planning: Gateway Placement and Device Configuration." 2019 IEEE International Congress on Internet of Things (ICIOT). IEEE, 2019.
- [8] Lin, Yuxiang, et al. "SateLoc: A Virtual Fingerprinting Approach to Outdoor LoRa Localization using Satellite Images." 2020 19th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN). IEEE, 2020.
- [9] Magrin, Davide, Martina Capuzzo, and Andrea Zanella. "A thorough study of LoRaWAN performance under different parameter settings." IEEE Internet of Things Journal 7.1 (2019): 116-127.
- [10] Gupta, Suneet Kumar, Pratyay Kuila, and Prasanta K. Jana. "Genetic algorithm approach for k-coverage and m-connected node placement in target based wireless sensor networks." Computers & Electrical Engineering 56 (2016): 544-556.

Traditional vs. New Long-Range Communication Technologies¹

1. Data source: [Lee 2007], [Ghena 2019]