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Abstract—Low-Power Wide-Area Networks (LPWAN) has re-
cently been scaling rapidly, targeting at large-scale and low-
power applications. LoRa and LoRaWAN have been adopted in
many practical deployments. While the advantages of LoRa have
been well-demonstrated, challenges in scalability and reliability
impede LoRa networks from further expansion. Traditional
deployment strategies for reliability and fault tolerance, which
ensure that multiple networking paths are available, are not
directly applicable because of LoRa’s single-hop and Aloha
medium-access design. In this paper, we study how to design
LoRa networks in large regions so that their transmission
reliability and fault tolerance against gateway failures and
interference are met for LoORaWAN technology. We first introduce
m-gateway connectivity to guarantee fault tolerance due to LoRa’s
unique properties. Next, we leverage state-of-the-art transmission
reliability model based on estimated path loss from satellite
maps. Combining the above two contributions, we formulate an
Integer Nonlinear Program (INLP) that minimizes the number
of gateways through strategic gateway placement and resource
allocation. Constraints are imposed to achieve (i) fault tolerance,
(i) reliable transmission (i.e., satisfactory QoS), (iii) sufficiently
long lifetime. Due to high complexity of INLP, we design a greedy
heuristic, RFT-LoRa, to acquire a high-quality solution for larger
size problems. Comprehensive evaluation is performed with ns-3
simulator using real-world datasets. The results demonstrate that
RFT-LoRa enhances average packet delivery ratio by 10% -
54% over the existing heuristic under gateway failures and
interference.

Index Terms—IoT networks, LoRa, reliability, fault tolerance,
gateway placement, resource allocation.

I. INTRODUCTION

Recent years have witnessed explosive interest in Low-
Power Wide-Area Networks (LPWAN) due to its remarkable
ability in supporting large-scale and low-power Internet-of-
Things (IoT) applications, e.g., smart cities [1], smart agri-
culture [2], and industrial IoT [3]. Ericsson mobility report
anticipates 6.3 billion LPWAN IoT connections over the globe
by 2026, which makes up 23% of the total connections [4].
LPWAN fills the technology gap between high bandwidth but
limited range networks such as Wi-Fi/Bluetooth, or requiring
high power as is the case in Cellular. LoRa (Long Range) is
an open-source LPWAN technique that operates in sub-GHz
ISM bands. Using Chirp Spread Spectrum (CSS) modulation,
LoRa signals can be successfully decoded even if the received
signal strength is below the noise floor. Compared to other
LPWAN technologies, such as Sigfox [5] and NB-IoT [6],
LoRa can be easily utilized by any individual due to unlicensed

band usage, open-source infrastructure, and low installation
cost. Meanwhile, an ecosystem of LoRa and LoRaWAN (i.e.,
an open protocol for LoRa) is scaling rapidly thanks to
Semtech [7] and LoRa Alliance [8], which enables multi-
city and nation-wide LoRa deployments such as The Things
Network [9]. According to IoT Analytics, LoORaWAN is the
most adopted LPWAN technology to date, representing more
than 1/3 of all global deployments [10].

Although these deployments demonstrate LoRa’s capabili-
ties, there are still a lot of challenges preventing LoRa and
LoRaWAN from a broader adoption, especially due to scala-
bility and reliability issues [11]. Existing works in designing
LoRa networks have studied assigning radio parameters to end
devices to maximize Quality of Service (QoS), lifetime and
energy efficiency [12]-[14]. Ousat et al. [15] were the first
to jointly optimize gateway placement and parameters con-
figuration in LoRa networks. Nevertheless, previous research
overlooked the fault tolerance (or robustness) of LoRa net-
works upon failures. The sparse distribution of gateways and
long communication links make LoRa networks susceptible
to gateway failures and interference. In contrast to traditional
wireless networks, LoRa uses a single-hop broadcast and
Aloha MAC protocol. Therefore, traditional reliability-aware
or fault-tolerant strategies through alternative path routing and
scheduling [16], [17] are not directly applicable. The issues
of reliability and fault tolerance in LoRa networks are key
challenges for large-scale deployment of LoRa applications.

In this paper, we propose an end-to-end methodology
for designing reliable and fault tolerant LoRa networks via
strategic gateway placement and parameter configuration. The
contributions of this paper are the following:

1) To the best of our knowledge, our work is the first
one to offer an automated design of a fault-tolerant
LoRa network that ensures its functionality in spite of
gateway failures and interference under LoRaWAN, by
introducing a new requirement of m-gateway connectivity.

2) In contrast to theoretical path loss models used in previ-
ous works [12]-[15], we leverage state-of-the-art trans-
mission reliability models based on estimated path loss
from remote sensing, which takes into account attenuating
land cover effects [18].

3) We formulate an Integer Nonlinear Programming (INLP)
minimizing the number of gateways given the device
locations. The imposed constraints include: (i) fault tol-



erance, (ii) reliable transmission (i.e., satisfactory QoS),
and (iii) long lifetime. We demonstrate the problem is
NP-complete.

4) Due to the complexity in solving the INLP, we design
a greedy heuristic named RFT-LoRa, that provides high-
quality solutions in large-scale cases.

5) We validate the performance and desirable properties of
LoRa networks in ns-3 simulator [19] with the state-
of-the-art open-source LoORaWAN module [20]. The end
device locations are configured using a real-world de-
ployment from PurpleAir [21]. The results indicate that
RFT-LoRa approximates well the optimal solution and
enhances 10% - 54% on average packet delivery ratio
(PDR) compared with existing heuristic under gateway
failures and interference.

II. RELATED WORK
A. Joint Gateway Placement and Resource Allocation

The problem of gateway (or base station) placement has
been extensively studied in Cellular networks [22], ad-hoc net-
works [23], [24] and mesh networks [17], [25]. The majority
of literature has applied Integer Linear Programming (ILP) or
Mixed-Integer Linear Programming (MILP) to jointly optimize
gateway placement with routing [26], link scheduling [27], or
both [17]. Joint optimization is necessary for maximizing the
overall performance which includes cost, coverage, QoS, life-
time, robustness, etc. [17], [22], [23] Due to the NP-hardness
of the original formulation, multiple heuristics are proposed to
find sub-optimal solutions in large-scale cases, e.g., clustering
algorithms [28], genetic algorithms [29], population-based
metaheuristics [24] and simulated annealing [30].

B. Fault-Tolerant Networks Design

In terms of fault tolerence, existing works have invented
strategies such as k-coverage and m-connectivity. K-coverage
requires each target to be covered by at least k sensors, so that
any failure of less than k sensors will not impede successful
sensing [31]. An entire field of robust sensor deployment is
brought up for robustly detecting targets given each sensor
has a certain probability to fail [32]. M-connectivity, on the
other hand, ensures at least m distinct networking paths for
each node [31]. In this way, backup paths support redundancy
and robust transmission upon link failures. For traditional Wi-
Fi and Cellular networks, previous works have studied relay
node placement [16] and gateway placement [17] to establish
a robust routing tree. However, the above contributions are not
applicable to LoRa networks due to single-hop broadcast and
Aloha MAC protocol.

C. LoRa Networks Design

The QoS and lifetime of LoRa networks depend on device
and gateway placement, and transmission parameters of all end
devices. Most of the existing works had focused on assigning
radio parameters among devices to improve QoS and/or net-
work lifetime globally. Reynders et al. [12] aimed minimizing
the maximal collision probability by deriving the percentage of

nodes using each Spreading Factor. This approach serves as a
foundation for their later contribution proposing a MAC-layer
protocol named RS-LoRa [33] for scheduling uplink traffic and
setting the radio parameters. Gao et al. [13] formulated a non-
convex optimization problem maximizing the minimal energy
efficiency among all end devices through resource allocation.
Sallum et al. [14] solved MILP to find the optimal Spreading
Factor and channel assignment regarding QoS. Besides, several
other algorithms have been developed to adaptively change
Spreading Factor according to the current performance or
energy level [34], [35].

Ousat et al. [15] were the first to formulate an optimization
problem of gateway placement and parameter configuration
in LoRa networks. They formulated Mixed-Integer Nonlinear
Programming (MINLP) to optimize energy efficiency and
proposed a greedy heuristic to place a given number of
gateways. Their method attempts to fairly allocate the gateway
and radio resources without any performance or reliability
guarantees. Additionally, they used theoretical log-normal path
loss models and deployed one gateway in the feasible range of
a device, both making their network unreliable in practice. In
contrast, in our work we incorporate state-of-the-art path loss
models and a novel strategy named m-gateway connectivity.
Our goal is to ensure reliable transmission and fault tolerance
in LoRa networks via strategic gateway placement and end
device configuration. Note, that the proposed network-level
optimizations in this paper are complement to hardware- and
protocol-level techniques, e.g., Choir [36] and Charm [37].

III. DESIGNING RELIABLE AND FAULT-TOLERANT LORA
NETWORKS

In this section, we first present key parameters of LoRa
(Section III-A), then outline our major contributions. A novel
strategy to design fault-tolerant LoRa networks is proposed in
Section ITI-B. We also explain how to get a practical estimate
of path loss based on remote sensing (Section III-C).

A. Key Parameters of LoRa

Key radio parameters of LoRa determine the transmission
range, QoS and energy consumption of LoRa end devices
in a complex manner. Spreading Factor (SF) refers to the
number of bits that can fit into one chirp [38]. Intuitively,
SF determines the slope of the chirp. Higher SF enhances
the robustness to noise, lowers the sensitivity threshold for
successful decoding, thus increases the effective transmission
distance [13]. Meanwhile, switching to the next higher SF will
double the transmission time and energy [38]. We summarize
various characteristics of SF in Table 1. Channels refer to the
frequency bands used for signal transmission. The USA Lo-
RaWAN frequency spectrum has 64 available uplink channels
(125kHz for each) starting at 902.3 MHz [39]. Transmission
Power (Tx Power) is the actual amount of radiated power that
a transmitter produces, which affects the chance of surviving
attenuation caused by the environment [38]. Other parameters
such as code rate [38], are set per application, so we do not
optimize for them here.



TABLE I: SNR threshold, sensitivity threshold, transmission time
and data rate using different SF [13], [15]. The last two are obtained
under 50 bytes payload.

SF 7 8 9 10
Sensitivity Threshold (dBm) -123  -126 -129  -132
Transmission Time (ms) 98 175 329 616
Data Rate (kbps) 4.1 2.3 1.2 0.6

B. M-Gateway Connectivity

Traditional strategies to enhance network fault tolerance
are based on introducing redundant nodes and paths in the
network. With a traditional m-connectivity, a node will have
multiple paths to one gateway through different relay nodes.
However, such strategy does not apply to LoRa networks,
where a single-hop broadcast is only permitted. Moreover, as
a result of Aloha, carelessly placing redundant nodes might
cause more collisions and degrade the QoS of LoRa networks.

In this paper, we introduce a new property of m-gateway
connectivity as a guideline for placing devices and gateways
in LoRa network for ensuring fault tolerance. If a LoRa end
device meets m-gateway connectivity, it is capable of reaching
m gateways, and the transmission reliability to the primary
gateway exceeds a specified threshold. M-gateway connectivity
leverages the latest LoRaWAN specification that LoRa end
devices can switch to higher SFs and transmit farther distance
when acknowledgements are lost [39]. Therefore, m gateways
could be located within feasible ranges under various SFs. In
the following lines, we use a simple example to demonstrate
the benefits of using m-gateway connectivity.

Let us consider the deployment of two end devices eq, es
and two gateways g1, ge as shown in Figure 1. In a normal
case, e1 (or ey) is capable of reaching g; (or go) using SF7.
If g1 fails or there is a strong interference around gi, then e
will switch to SF8 automatically and will connect to g, which
serves as a backup gateway for e;. In this way, 2-gateway
connectivity is achieved for e; as g; and go are placed within
a feasible range of SF7 and SF8. Such design has multiple
benefits:

o Fault tolerance is improved via backup gateways for e;
during gateway failures and interference.

o Unnecessary collisions are avoided. If both g; and g» are
located in SF7’s range, packets of e; and ex may collide.

o Savings on the total number of installed gateways and
budget by having multi-use of gateways. In Figure 1, if
g1 can also be reached by ey with a higher SF, we would
achieve 2-gateway connectivity for two end devices with
only 2 deployed gateways (instead of 3 or 4 gateways
required otherwise).

The mechanism of automatically increasing SF upon ac-
knowledgement lost is enabled by LoRaWAN specification
V1.0.4 [39]. Hence, m-gateway connectivity does not require
changes on protocol or firmware, but only a careful design of
gateway placement and parameter configuration.

(€] End device
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of e; using SF7

Reachable range
of e, using SF8

Fig. 1: An example of 2-gateway connectivity setup on end device e;.

Sensor

Fig. 2: An example of estimating path loss using remote sensing as
in [18].

C. Estimating Path Loss with Remote Sensing

Path loss quantifies signal attenuation during propagation
thus is key in evaluating transmission reliability. While previ-
ous works adopted Friis model [13] or log-normal model [15],
these models are impractical since they fail to account for the
irregular attenuation pattern brought by surrounding environ-
ment. Recent work by Lin et al. [18] proposed an accurate
estimation of LoRa path loss using remote sensing. They used
the log-normal model as a base model to estimate the large-
scale path loss PL(d) in dB:

PL(d) = PL(do) + 10ylog,, (j) +N, (1)
0

where d is the distance between LoRa node and gateway,
PL(dy) is the mean path loss at reference distance dy, ~ is the
path loss exponent of the corresponding land type, and N, is a
zero-mean Gaussian random variable with standard deviation
of o. Field experiments are performed to fit PL(dy),~,0 of
various land-cover types, including build-ups, forest, field, wa-
ter and rangeland. The average fitting error between prediction
and measurement of each category is less than 3 dB [18].
They further proposed an algorithm to estimate the path loss
between any two locations after segmenting the land types
from satellite map and aggregating the attenuation through
each land type. For example, the propagation loss using LoRa
from a sensor to a gateway shown in Figure 2 can be accurately
predicted by summing up the attenuation through forest, field
and build-ups.

In this paper, we leverage the remote sensing-based method
in Lin et al. [18] to initialize the path loss matrix PL. PL;;



is the path loss from end device 7 € [N to candidate gateway
j € G, which is modeled as a Gaussian random variable:

PL;j ~ N (PL;j,0%), (2)

where PL;; is the expectation of path loss obtained from the
algorithm with fitted land-cover parameters in [18].

IV. PROBLEM FORMULATION

Combining m-gateway connectivity and the practical path
loss estimation, we are able to formulate an optimization
problem for gateway placement and end device configuration
given device locations.

A. System Model

Let NV denote a set of predetermined locations for the end
devices. G is a candidate grid space for gateway placement.
We use binary variables g; to represent whether a gateway is
placed at each grid point in G:

if a gateway is placed at j

1 .
9= { 0 otherwise. vieg ()

For LoRa end devices, we assume a uniform sampling
period 7' and each device initiates one uplink transmission per
sample. There are three device classes in LoRaWAN [39]. In
this work, we focus on Class A whereby each uplink transmis-
sion is followed by two downlink receive windows [40]. We
require confirmed traffic (i.e., acknowledgement from gateway
is required for each packet) because acknowledgements are the
key in ensuring fault tolerance, which is explained in detail in
Section III-B.

In our formulation, we associate the selection of SF, chan-
nel, Tx Power at each end device with an integer variable:

sf; €SF, VieN
ch; €CH, YieN “4)
tp; € TP, VieN

SF,CH, TP are candidate sets of available SF, channel and
Tx Power respectively.

B. Optimal Problem Formulation

We formulate a problem as follows: given a set of end
devices’ locations, how to place gateway and allocate trans-
mission parameters at each end device to minimize the total
number of gateways, while ensuring: (i) fault tolerance against
possible gateway failures and interference, (ii) reliable trans-
mission (i.e., satisfactory QoS), (iii) sufficiently long lifetime.
We summarize the important notations used in the paper in
Table II.

Our complete Integer Nonlinear Programming is shown
below as (P). It minimizes the number of gateways as shown
in Eq. (5a), which is equivalent to the minimum installation
cost. Eq. (5b) handles the m-gateway connectivity requirement.
Eq. (5¢) states the QoS constraint. Eq. (5d) specifies the
lifetime constraint in order to guarantee the longevity of
each end device. We next discuss how we arrive at these
expressions.

TABLE II: List of important notations in problem formulation.

Symbol Meaning
N Set of given locations for LoRa end devices
g Set of grid locations to place LoRa gateways
PL Path loss matrix for A" and G
o Average standard deviation of path loss from [37]
gj Binary variable of gateway placement at j € G
sfi Integer variable of SF at i € A/
ch; Integer variable of channel at i € N’
tp; Integer variable of Tx Power at i € N’

cff Reacheability from device i to gateway j with SF k
and Tx Power s

M Redundant connectivity requirements

PDR;  Packet delivery ratio of end device i € N

PDRy;,  Predetermined PDR threshold at each end device

Py Success deliver probability between i € A and j € G

RSS;;  Received signal strength at j € G from ¢ € N

SSk Sensitivity threshold under SF & (Table I)

Nij Number of devices reaching j and sharing the same
resource with ¢

hij Uncorrupted probability at ¢ with other devices

Ty Transmission time under SF k (Table I)

T Uniform sampling interval at each LoRa end device

Pow; Average power consumption of end device i € N’

FEyatt Capacity of batteries attached to end devices

L; Lifetime of end device i € N

Lyp Predetermined lifetime threshold at each end device

P) pomin ; 9 (5a)

s.t. Z gick® > M, VieN (5b)
JEG
PDR; (g,sf,ch,tp) > PDRyy,, Yie N  (5¢)
Li(sfi,tpi) = Len, Vie N (5d)

M-Gateway Connectivity Constraint: The core idea of
m-gateway connectivity is to provide the additional backup
gateways in case of gateway failures and interference. We
define a notation cff as the feasibility of transmitting from
device i to gateway j with SF k& and Tx Power s.

K 0 otherwise

RSS computes the received signal strength at the gateway
from Tx Power and path loss, which is given by

RSS;jBm) = tpianm + G @) + G @y — PLijapy (7)

Here G* and G™® are the transmitting and receiving antenna
gains [41]. Without the loss of generality, we assume a worst-
case scenario of G'* = G"® = () dB. Technically, a positive
Cff as a parameter indicates that transmissions under such
configuration can have a successful ratio higher than PD Ry,
if considering the sensitivity threshold SS}. c{](» S with K, S as
the maximal SF and Tx Power option respectively, evaluates
whether device ¢ can reach gateway j using the best possible
parameters. In other words, cfj{-s denotes the feasibility of
gateway j being a backup gateway for device i. We compute
the total backup connectivity by summing up cfj S at all
deployed gateways and require it to be at least M, which is
how we arrive at the linear constraint in Eq. (5b).



QoS Constraint ensures the minimal packet delivery ratio
(PDR) is met at each end device. High PDR indicates that the
data collected by one end device can be reliably delivered to
the network server. Given that the backhaul between gateways
and network servers is usually stable, transmission from an end
device is considered to be successful if the packet is received
by at least one gateway [13]. Hence the PDR at end device
1 € N can be computed as follows:

PDR;=1- ][ (1-g;Py) (8)
JjEG

where P;; stands for the probability that a successful transmis-
sion is established between device ¢ and gateway j. Following
existing models [13], [15], a successful transmission has to
satisfy two conditions: (i) the received signal strength is higher
than the sensitivity threshold, (ii) the signal is not corrupted
due to collisions. Specifically, if a gateway is deployed at j,
P;; is estimated as follows:

Pij = ®;; - hyj ©)

The first term ®;; refers to the probability that the received
signal strength R.S.S;; is above the sensitivity threshold. Given
that path loss PL;; follows Gaussian distribution (Eq. (2)), ®;;
is explicitly written as CDF of a Gaussian distribution:
®,; =P{RSS;; > SSsy,}
=P{N (PL;j,0%) < tp; — SSsy, }
= @(tpi — Ssz,i; PLZ‘]‘, 0'2)

(10)

where SS,y, is the sensitivity threshold depending on SF as
shown in Table I.

The second term h;; of Eq. (9) represents the probability
that the signal is not corrupted in collisions. Here we focus
on collisions among the same SF as they have higher SINR
threshold compared to inter-SF collisions (we refer the readers
to [42] for detailed discussions). We leverage the collision
probability model in [15]. We define N;; as the number of
end devices using the same SF and channel resources as ¢ and
can reach gateway j, which also drives h;; together with the
transmission time Ty, as a function of SF. Here [cond] is 1
when the inner condition cond is met, otherwise 0.

Nij = [sfs = sfi] - [chy = chi] - I (11a)
eEN
hij = exp (=275, Nij /T) (11b)

Combining Eq. (8), (9), (10), (11), we can calculate PDR;
given a complete gateway placement and device configuration.
We require PDR at each end device i to exceed a predeter-
mined threshold PD R;;, which transforms to Eq. (5c).

Lifetime Constraint: We adopt the model in [38] where
power measurements are performed on an Arduino Uno-
based platform [43] with Semtech’s SX1276 chip [44]. The
power model distinguishes the transmission, reception and
sleep states, estimating the average power as follows:

Erx(sfi,tpi) + Erx + Esieep(sfi)] . (12)

1
P i =
ow; = = |

Suppose T is the uniform sampling interval. Erx accounts
for the transmission energy relying on the selections of SF
and Tx Power:

T,
Erx(sfi,tpi) = PDfR

Pyrou represents the power supply for an active MCU, while
the power draw of LoRa chip during transmission is a function
of the Tx Power, i.e., Prx(tp;). For robustness, we require
acknowledgements from gateways so the transmission time
Ty, is divided by PDR; to account for re-transmissions.

Erx is a constant denoting the average energy in receiving
and decoding acknowledgements. Note, that Frx in each
communication round varies according to SF selection, receive
window, etc. Since the varying scale of Erx is relatively
small compared to Frx, we leverage the estimated average
reception energy value from [38]. The last term Eyeep =
(T — PTB% -)Psicep estimates energy dissipation during sleep
mode. FPgeep is the constant sleeping power of the whole
system including MCU and LoRa chip. All parameters are
obtained from [38].

Given the battery capacity Fp.+ and the predetermined
lifetime lowerbound L;;, the constraint on lifetime L; is
expressed as follows and is identical to Eq. (5d):

[Pyvcu + Prx(tpi)] . (13)

L; = Epatt/ Pow; > Lyp,. (14)

C. Complexity Analysis

The formulation (P) contains |G| + 3 |\/| integer variables,
2 |N| nonlinear non-convex constraints (Eq. (5¢), (5d)) and
|NV| linear constraints (Eq. (5b)). Although optimal solvers
exist for INLP, the proposed problem cannot be solved in
polynomial time because the proposed problem (P) is NP-
complete.

First, (P) belongs to the class of NP. For any given assign-
ment, we can verify whether it satisfies Eq. (5c), (5d) and
(5b) in polynomial time. Then, we consider a relaxed version
of (P) by setting PDR;, =0, Ly, = 0. Namely, we relax
the nonlinear transmission reliability and lifetime constraints.
The relaxed problem is equivalent to the minimum set cover
problem whose goal is to find a cover for a given set of
targets A/ with the minimum number of grid points from G.
The coverage provided by the grid is irregular in our case
due to different land-cover types. Hence (P) is reducible to
the well-known NP-complete problem of minimum set cover
problem [45]. It is also clear that arbitrary instances of set
covering can be encoded as an instance of (P), and thus (P)
is NP-complete.

V. APPROXIMATION HEURISTIC: RFT-LORA

Since optimal solvers do not scale for large-size problems,
we next propose a greedy heuristic, Reliable and Fault-Tolerant
LoRa, namely RFT-LoRa, as outlined in Algorithm 1. RFT-
LoRa greedily selects one location to place an additional
gateway per each iteration, terminating once m-gateway con-
nectivity is attained at every end device (line 4). To figure
out which gateway candidate location is the best, RFT-LoRa



attempts to place a gateway at every unoccupied location
(line 7), after which it greedily assigns SF, channel, and Tx
Power to all end devices based on the current deployment
(line 11). The benefit B of each assignment is evaluated based
on the current values of (i) PDR, (ii) lifetime, and (iii) gateway
connectivities:

B =Y wiPDR; +w,L; + min(Conn; — M,0). (15)
ieN

The first two terms stress PDR and lifetime at each end
device, i.e. PDR; and L;. The third term penalizes the
gap between current gateway connectivities C'onn; and the
required level M. Note, that by upper bounding this term with
0, RFT-LoRa disregards extra gateway connectivities. Weight
parameters wi,wo enable a trade-off between PDR, lifetime
and gateway connectivities. We set wj,w» to small values so
that the increased gateway connectivity plays the major role in
greedy selection as long as transmission reliability and lifetime
constraints are satisfied (line 22).

The key of the heuristic is the greedy device configuration

procedure. Prior to the configuration, the end devices are
sorted according to their path loss to the new gateway (line
8). End devices experiencing less path loss are given higher
priority. The greedy configuration procedure starts with the
minimum SF and channel, and the maximum Tx Power (line
23). The process ends once it finds a successful configuration
that meets both PDR and lifetime constraints (line 24 - 27).
Such mechanism ensures that we tend to allocate the best
transmission resources to closer nodes.
Complexity Analysis: RFT-LoRa takes O(M |N]*|G|?) to
generate a result. Satisfying m-gateway connectivity at each
end device takes O(M |N|) iterations (line 4). Traversing
through each potential gateway location costs O(|G|) (line 6).
RFT-LoRa attempts to configure all end devices located in
the reachable range of the current gateway, which costs
O(|N]). The GreedyDevConfig function steps through
all resource combinations at each device (line 21), taking at
most |SF| - |[CH| - |TX| iterations, which is a constant under
fixed SF,CH,TX sets. Computing PDR; and L; requires
global evaluation that costs O(|[A]|G|). Combining the above
components, we estimate the time complexity of RFT-LoRa
at O(M |N]*|G|*). Although RFT-LoRa is a polynomial-
time algorithm, and therefore runs significantly faster than
the optimal solver, its execution time increases dramatically
for larger deployments. In the future, we plan to look into
accelerating techniques for RFT-LoRa.

VI. EVALUATION

A. Simulation Setup

We evaluate the performance of the following methods:

o OPT: The optimal solution to the proposed problem.

e OPT,: The optimal solution to the relaxed problem,
where we convert the integer variables to continuous
values.

Algorithm 1: Greedy Heuristic for LoRa Deployment
Input: N, G, PL, M
Output: g, sf,ch,tp

1 g; < 0, VJ €g

2 sf; < —1,ch; « —1,tp; + —1, Vi € N

3 Conn; < 0,Vie N

4 while 3i € N, Conn; < M do

5 Bbest — —00

6 foreach j € G,g; =0 do

7 gj < 1

8 1dZ sorteq < argsort({PL;j | i € N'})
9 for i < 17 |N|do

i idTsorted|t]
GreedyDevConfig(g,sf,ch,tp,i',Conn;)

10
11

12 Update PDR and L globally

13 Update B, according to Eq. (15)
14 if B,cw > Bpes: then

15 L Biest < Bpew, next < j

16 | g, <0

17 if Bpesi = —oo then

18 | break

19 L Onext < 1

20 return g, sf,ch,tp
21
22 Def GreedyDevConfig (g, sf,ch,tp,i,Conn;):

23 for sf; € SF,ch; € CH,tp; € TP do

24 if PDR;(g,sf,ch,tp) > PDRy;, and
Li(sfi,tpi;) > Ly, then

25 Conn; < Conn; + 1

26 Update sf;, ch;,tp;

27 break

28 return sf,ch,tp, PDR;, L;,Conn;

« EE-LoRa: The energy efficiency-driven heuristic pro-
posed in Ousat er al. [15]. EE-LoRa requires a user-
specified gateway number as input which is set to the
same as the output of our heuristic.

« RFT-LoRa: Our proposed heuristic.

We implement RFT-LoRa and EE-LoRa with Python 3.7.
The optimal problem is modeled in MATLAB R2020b. The
original INLP is solved by BONMIN [46] which uses the
Branch-and-Bound algorithm, while the relaxed NLP is solved
by SNOPT [47] employing a sparse sequential quadratic pro-
gramming (SQP) algorithm. Finally, we evaluate our design in
ns-3 simulator [19] augmented with the state-of-the-art open-
source LoRaWAN module [20]. We use the packet tracker
in ns-3 to evaluate the packet delivery ratio (PDR) at each
end device. The same lifetime model as in our formulation
is implemented and used to predict the lifetime. To assess
the fault tolerance of our design, we modify the PHY level
of the gateway modules in ns-3 to randomly switch down



TABLE III: Parameter settings in evaluation.

TABLE IV: Comparison of OPT and OPT,. on 400km?

Param. Value | Param. Value | Param. Value
T 20 min FEyatt 3 Ah Lyp, 2 years
PDRt;L 0.8 ERX 0.005 7 PJMCU 23.48 mW

Psjeep 100 pW o? 100.0724 | wi,w2 104

0/1/2 gateway(s) and add interference at gateways. We set
SF = {7,8,9,10} to match the available SF in USA [39].
For channels, we assume 8 uplink channels are available
for our application, i.e., CH = {0,...,7}, leaving the rest
channel resources for other users. Tx Power is selected from
typical settings of Semtech’s SX1276 chip [44], i.e., TP =
{2,5,7,11,14,20} (dBm). Other important parameter settings
are reported in Table III. The source code is available online'.
Experiments are done on a desktop with Intel Core 17-8700
CPU at 3.2 GHz and 16 GB RAM.

We conduct comprehensive experiments on three scenarios:

« Comparison of optimal and heuristic algorithms on
small, 400km?, and medium, 900km?2, areas: We
compare optimal, OPT, and relaxed optimal problems,
OPT, under various settings on a smaller field with
20 kmx20 km area. Through this we show that their
solutions match well. We then evaluate OPT,, RFT-LoRa
and EE-LoRa on a medium size field of 30 kmx30 km,
with 25 candidate gateways and 30 randomly distributed
end devices. Log-normal path loss model is used for these
experiments.

o RFT-LoRa vs. EE-LoRa with PurpleAir [21] dataset:
We test RFT-LoRa and EE-LoRa on a real-world de-
ployment from PurpleAir [21] with 264 air-quality sen-
sors spread over a 100 kmx60 km field in Southern
California, USA. There are 216 candidate gateway grid
points equally distribute over the field, with 6 km dis-
tance between adjacent locations. The path loss matrix
is computed based on remote sensing and land-cover
segmentation. The fault tolerance of both heuristics upon
gateway failures and interference are evaluated in ns-3.

« Scalability study on 2,500km?> area: We provide data
on performance scalability of RFT-LoRa and EE-LoRa
over a large region covering 50 kmx50 km area, con-
taining 64 candidate gateways and randomly distributed
end devices. The number of devices are selected from
{100, 200,500, 1K,2K,5K}. The path loss matrix is
computed using the log-normal propagation model.

B. Results

1) Optimality comparison on small and medium problems:
The output of OPT and OPT, optimization for a smaller area
of 400km? is listed in Table IV. The first column shows
parameter settings for each optimization case. For example,
(16, 5,1) indicates 16 candidate gateways, 5 end devices and
1-gateway connectivity. After relaxing to continuous variables,
the resulting gateway number of OPT, is not an integer value,

Uhttps://github.com/Orienfish/robust-lora

Setting OPT OPT,

(|G|, |N], M) Gateway # Time (Sec) Gateway #  Time (Sec)
(16,5,1) 2 1910 2.0 4.1
(16,5,2) 4 2314 4.0 2.5
(16.5.3) 8 2444 8.0 3.0
(16,7, 1) 3 5334 3.0 25.1
(9,5,1) 2 8910 135 7.8

TABLE V: Comparison results on 900km?

Method Gateway #  Time PDR Lifetime (Yrs)
(Sec)  (Avg/Max/Min)  (Avg/Max/Min)
OPT, 2.92 2953 0.90/1.0/0.76 2.2/2.4/1.9
EE-LoRa 3 0.3 0.68/0.84/0.55 2.2/2.6/1.6
RFT-LoRa 3 1.8 0.87/1.0/0.73 2.3/2.6/1.8

so we use it as a lower bound. OPT, is 212x - 1142x faster
than OPT while still providing accurate results, which can be
attributed to SNOPT’s effectiveness in large-scale nonlinear
optimization. Unfortunately, OPT does not scale to larger size
problems due to its long runtime.

In a medium size area of 900km?, the average number of
gateways to deploy and the execution time of OPT,, RFT-
LoRa and EE-LoRa over the 5 trials are summarized in
Table V. The right two columns in Table IV show the PDR and
the lifetime distribution among all end devices when applying
the generated deployments under one random initialization in
the ns-3 simulator. RFT-LoRa ends up with the closest integer
to the lowerbound given by OPT, as gateway number. With
similar PDR and lifetime, RFT-LoRa is 1640x faster than
OPT,. The baseline EE-LoRa takes less than a second to
finish in this example, but results in the worst PDR as EE-
LoRa only proportionally distributes the available resources
without performance guarantees. In fact, RFT-LoRa trades off
the runtime for a quality of the solution, as we show below.
All methods attain similar lifetime patterns that are close to
the 2-year threshold. Clearlyy, from these results it can be seen
that RFT-LoRa provides a good approximation of the relaxed
optimal bound.

2) RFT-LoRa vs. EE-LoRa with PurpleAir [21] dataset:
In this experiment, we test RFT-LoRa and EE-LoRa on an
area covering 6,000km?. End device locations are initialized
based on the PurpleAir deployment [21]. The remote sensing-
based model is used to configure the path loss matrix. We run
ns-3 simulations for various levels of gateway failures and
interference. We incorporate our remote sensing-based path
loss model into EE-LoRa to equalize the comparison between
the two models. Without that, the generated deployment by
EE-LoRa would be unusable due to its PDR being close to
Zero.

The transmission reliability and lifetime under various levels
of gateway failures and interference are shown in Figure 3.
RFT-LoRa deploys 6, 9, 12 gateways under /, 2, 3-gateway
connectivity for the PurpleAir setup. The baseline is EE-LoRa
with gateway numbers set to 6, 9, 12 to match RFT-LoRa in
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Fig. 4: Left: Average placed gateway number of RFT-LoRa.
Right: Average execution time ratio between RFT-LoRa and
EE-LoRa.

each comparison. RFT-LoRa enhances PDR by 10% - 54% on
average as compared to EE-LoRa. The benefits of m-gateway
connectivity for fault tolerance of the network are clear when
gateway failures and interference are injected. When failures or
interference occur and a lot of incoming packets are corrupted,
the end device automatically switches to the higher SF. With
RFT-LoRa, additional backup gateways can be reached, so
the robustness is enhanced. Impressively, RFT-LoRa is able
to maintain the average PDR above 0.8, the predetermined
PDRyy, across all cases. In spite of the same gateway number,
EE-LoRa has much lower PDR. With strong interference of
-124 dBm, the average PDR of all EE-LoRa’s deployments
drops by as much as 60%, while RFT-LoRa retains robustness.

The lifetime distribution among all devices in the gateway-
failure scenario is presented in Figure 3 (right). We omit
the plot of lifetime distribution in the interference scenario
since it has a similar pattern. Higher PDR leads to longer
lifetime in devices with the confirmed transmissions. We can
observe 5% - 18% longer and more stable lifetime on average
with RFT-LoRa over its EE-LoRa counterpart. RFT-LoRa
does not optimize the lifetime specifically, but instead focuses
on meeting the 2-year lifetime constraint. In summary, ns-
3 evaluations show RFT-LoRa’s excellent ability to improve
the fault tolerance while ensuring transmission reliability and
lifetime, when incorporated into LoRaWAN.

3) Scalability on large problems: Figure 4 (left) shows the
number of placed gateways with RFT-LoRa when varying
the number of end devices in a large-scale deployment. We
take the average gateway number after 10 random end-device
initializations. RFT-LoRa places nearly constant number of

gateways to cover the given area under /- and 2-gateway
connectivity, even though the number of end devices increases
on the log scale. The sudden gateway increase at 500 and
1K devices under 3-gateway connectivity indicates a saturated
capacity with our configuration. We also notice that RFT-LoRa
requires only 1.2x - 1.5x more gateways instead of 2x when
switching from - to 3-gateway connectivity, resulting in large
cost savings during the deployment. These savings come from
leveraging backup gateways as the primary gateways for other
end devices. In practice, the user can identify different m-
gateway connectivity requirements at various locations and
apply our methodology to trade-off fault tolerance and instal-
lation costs.

Figure 4 (right) depicts the execution time ratio between
RFT-LoRa and EE-LoRa under the same gateway number.
RFT-LoRa takes generally longer to finish compared with
EE-LoRa. However, EE-LoRa comes with no performance
guarantees while RFT-LoRa instead ensures PDR and lifetime
constraints especially under potential gateway failures and
interference (as shown in the previous experiment). RFT-LoRa
takes at most 38 minutes for a large configuration of 5,000
devices, while EE-LoRa takes only 10 minutes. As RFT-LoRa
is run only once prior to deployment, it is reasonable to invest
a bit more time for a better performance to ensure a more
reliable deployment.

VII. CONCLUSION

In this paper, we study the problem of automating the
design of a robust and fault-tolerant LoRa network leveraging
current LoORaWAN. We propose m-gateway connectivity as a
novel strategy to provide fault-tolerance in LoRa networks. We
use the remote sensing technology to obtain a more accurate
estimate of path loss in the network. An INLP is rigorously
formulated to minimize the number of gateways through
gateway placement and resource allocation, while achieving
(i) fault tolerance, (ii) reliable transmission, (i.e., satisfactory
QoS), (iii) sufficiently long lifetime. Due to the complexity in
solving INLP, we provide a greedy heuristic, RFT-LoRa, to get
high-quality solutions. Comprehensive evaluations show that
RFT-LoRa is a good approximation of the optimal solution. It
improves the PDR by 10% - 54% on average over the state of
the art design by Ousat et al. [15] when gateway failures and
interference occur.
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