

Optimizing Sensor Deployment and Maintenance Costs for Large-Scale Environmental Monitoring

Xiaofan Yu¹, Kazim Ergun¹, Ludmila Cherkasova², Tajana Šimunić Rosing¹

¹ University of California San Diego ² Arm Research

System Energy Efficiency Lab

seelab.ucsd.edu

Ubiquitous Internet-of-Things (IoT)

 Around 24.6 billion IoT connections will be established over the globe in 2025, 23% of which is taken by wide-area IoT¹.

- 1. Ericsson Mobility Report, Jun 2020, https://www.ericsson.com/en/mobility-report/reports.
- 2. Figure source: https://www.clariontech.com/blog/10-cool-iot-applications-around-the-world.

Large-Scale Environmental Monitoring

Forest fire monitoring

Wildlife tracking

Air pollution monitoring

Water quality monitoring

- Large coverage
- Unstable connectivity
- Resource- and energy-constrained devices
- Huge maintenance cost

Disregarded by previous works!

Hidden Costs of IoT²

30-83%, up to 3.2M\$/year for 100k devices **See**

- Installation costs are one-time costs, including design, implementation, manufacturing, etc.
- Maintenance costs are recurring costs

communication

33-50 percent

- Monthly/device subscription fee
- Monthly/device overage fee

Administrative labor

20-50 percent

- Every deployed device requires at least 15 interactions/year
- Each interaction takes at least 5 minutes

Technical support

10-33 percent

- 10% of deployed devices require support
- T1 MTTR: 25 minutes
- T2 MTTR: 3 to 5 hours

Time to market

- Time to provision devices and services
- Testing devices and services before deployment

Managing Provisioning Monitoring

Diagnose Repair Replacement

^{2.} The Hidden Costs of Delivering IIoT Services, Cisco Jasper, Apr. 2016, https://www.cisco.com/c/dam/m/en_ca/never-better/ manufacture/pdfs/hidden-costs-of-delivering-iiot-services-white-paper.pdf.

 We aim at preventively minimizing the maintenance cost from the very first step of sensor deployment

How to model maintenance cost?

Software failures

Bugs, OS crashes

Link failures

Temporal inavailability

Hardware failures

Short circuit

Our Contributions

- A formal model of maintenance cost for IoT networks
 - Focusing on permanent failures including electronics failures and battery depletion.
- A problem formulation for sensor deployment in a continuous space
 - Optimizing for the minimum maintenance cost
 - Under acceptable sensing quality and complete connectivity
- Application of two metaheuristics to efficiently approximate the optimal solution
 - Particle Swarm Optimization (PSO)
 - Artificial Bee Colony (ABC) optimization

Previous Works

- Sensor deployment for environmental monitoring [Du 2015, Boubrima 2019]
 - Continuous reading (e.g. temperature) vs. target coverage
 - Sensing quality based on mutual information [Krause 2011]
 - (+) Justify the *sensing quality* definition
 - (+) Propose of a heuristic named **pSPIEL** and prove of its lower performance bound
- (-) Use discrete candidate locations
- (-) Assume noise-free sensors
- (-) Fail to consider lifetime and reliability factors
- Reliability-oriented deployment in IoT networks
 - **k-coverage**: each target is covered by at least **k sensors** [Gupta 2016].
 - m-connectivity: each node is connected to at least m other nodes [Gupta 2016].
 - (-) Redundancy improves fault tolerance but does not reduce maintenance cost!

Maintenance Cost Model

Power Module

$$P = P_{SoC}(T_c) + P_{comm} + P_{per}$$
Peripheral Power, e.g. sensor

Static and Dynamic SoC
Power

Power

Peripheral Power, e.g. sensor

Core Temperature Module [Beneventi 2014]

$$T_c[t+1] = AT_c[t] + BP[t] + CT_{amb}[t].$$

- T_c : Core temperature
- *P* : Average power
- T_{amb} : Ambient temperature
- A, B, C: constant parameters obtained from experiments

Maintenance Cost Model (Cont.)

- Electronics Mean-time-to-failure (MTTF) models considering different failure mechanisms [Mercati 2016]:
 - Time-dependent dielectric breakdown (TDDB)
 - Negative bias temperature instability (NBTI)
 - Hot Carrier Injection (HCI)

Exponential Temperature Factor!

Share a similar form with different constant
$$c$$
:
$$MTTF = c \exp\left(\frac{E_a}{kT_c}\right)$$

Maintenance Cost Model (Cont.)

- Temperature-Dependent Kinetic Battery Model (T-KiBaM) [Rodrigues 2017]
 - Available charge: supply the load directly
 - Bound charge: gradually refill the available charge
 - Refill rate depends on height difference and ambient temperature

Maintenance Cost Model (Cont.)

Maintenance Cost Under Temperature Variations Over Time See

Spatial temperature variation

Temporal temperature variation

For this one node, maintenance cost at location B is 1.1x of the cost at location A.

Cumulative distribution of temperature over time

Our method:

Integral on temperature distribution over time to compute battery lifetime and MTTF

- A metric to evaluate the information gain in global distribution by placing finite sensors into a continuous space
- Sensing Quality

$$F(A) = \frac{H(X_V) - H(X_V | X_A)}{H(X_V)}, \quad 0 \le F(A) \le 1$$

- *A* : A set of deployed locations
- *V*: A set of undeployed locations
- X_V, X_A : Sensor readings at V and A
- H(var): Entropy of variables var

- Examples
 - F(A) = 1 -> We can predict the readings at V with deployment A with 100% accuracy
 - F(A) = 0.1 -> We can reduce the uncertainty in predicting X_V by 10% compared to its original uncertainty

Problem Formulation

 How to deploy *m* sensors to minimize maintenance cost while satisfying

Acceptable sensing quality

Complete connectivity

$$g_{pq} - \sum_{q \in \Gamma(p)} g_{qp} = R, \quad \forall p \in A$$

$$\sum_{q \in \Gamma(c)} g_{qc} = mR, \quad \forall q \in A$$

$$A \subset S$$
, $A = m$

Data Generation

Data Converge

Non-convex

Non-linear

Infinite Freedom

- Q: Predefined sensing quality threshold
- R: Generated data size of each sample
- $\Gamma(p) = \{q \in S \text{ where } d_{pq} < r\}$: Disc-like binary communication range
- *S* : A convex 2D deployable space

Metaheuristics

- Population-based metaheuristics employ a group of individuals to search in the highdimensional space, ending up with sufficiently good solution.
- Fitness Function Design

$$Fit(A) = w_1 R_M(A) + w_2 \max(Q - F(A), 0) + w_3 P_e \quad \text{unconnected nodes}$$

Maintenance cost Benefit Penalty for unsatisfied Sensing Quality Penalty for incomplete connectivity

- Particle Swarm Optimization (PSO)
- Artificial Bee Colony (ABC) Optimization

Experimental Setup

- We implement our maintenance cost model and sensor deployment approach in MATLAB R2020a¹.
- Simulations are performed on a Linux desktop with Intel Core i7-8700 CPU at 3.2 GHz and 16-GB RAM.
- We download environmental monitoring history from PurpleAir² as predeployment data
 - Both datasets are in Southern California with temperature, humidity, air quality metrics (i.e., pm1, pm2.5, pm10) samples every 10 minutes.
 - Small-region: $30 \text{ km} \times 50 \text{ km}$, from Jan. 1, 2019 to Feb. 20, 2020.
 - Large-region: $60 \text{ km} \times 100 \text{ km}$, from Jan. 1, 2019 to Apr. 1, 2020.
- Baselines
 - IDSQ [Zhao 2004]: greedy heuristic
 - **pSPIEL** [Krause 2011]: clustering and greedy selection in each cluster
 - **sOPT:** a relaxed version of the original optimization problem

Discrete candidate locations

^{1.} Source code is available at https://github.com/Orienfish/AQI-deploy.

^{2.} PurpleAir, https://www2.purpleair.com/.

Simulation Results on the Small Region

Trade-off between Sensing Quality and Maintenance Cost

Execution Time

- Our heuristics save maintenance cost of 19% and 20% respectively compared to existing greedy algorithm
- Our heuristics achieve or even surpass the relaxed boundary given by sOPT
- ABC takes 2x longer than PSO due to extra searching trials in each iteration

Simulation Results on the Large Region

Trade-off between Sensing Quality and Maintenance Cost

Execution Time

- Our heuristics save maintenance cost up to 40% compared with existing greedy algorithm, at the cost of longer execution time
- Our heuristics extend the minimum battery depletion time and electronics MTTF by 2.69x and 2.8x respectively

Conclusion

- We develop a novel maintenance cost model for IoT networks
 - Our model focuses on permanent failures, i.e., battery depletion and electronics failures, incorporating the exponential temperature factor
- We formulate a sensor deployment problem optimizing for minimum maintenance cost while satisfying acceptable *Sensing Quality* and complete connectivity
- We apply two metaheuristics, i.e., PSO and ABC, to approximate the optimal solution
- Large-scale simulation results show that our approach saves up to 40% of average maintenance cost compared to existing greedy algorithm

Thanks!

Questions?

System Energy Efficiency Lab seelab.ucsd.edu

see

References

- Krause, Andreas, et al. "Robust sensor placements at informative and communication-efficient locations." ACM Transactions
 on Sensor Networks (TOSN) 7.4 (2011): 1-33.
- Gupta, Suneet Kumar, Pratyay Kuila, and Prasanta K. Jana. "Genetic algorithm approach for k-coverage and m-connected node placement in target based wireless sensor networks." Computers & Electrical Engineering 56 (2016): 544-556.
- Beneventi, Francesco, et al. "An effective gray-box identification procedure for multicore thermal modeling." IEEE
 Transactions on Computers 63.5 (2012): 1097-1110.
- Rosing, Tajana Simunic, Kresimir Mihic, and Giovanni De Micheli. "Power and reliability management of SoCs." IEEE
 Transactions on Very Large Scale Integration (VLSI) Systems 15.4 (2007): 391-403.
- Mercati, Pietro, et al. "Warm: Workload-aware reliability management in linux/android." IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 36.9 (2016): 1557-1570.
- Rodrigues, Leonardo M., et al. "A temperature-dependent battery model for wireless sensor networks." Sensors 17.2 (2017):
 422.
- Du, Wan, et al. "Sensor placement and measurement of wind for water quality studies in urban reservoirs." ACM Transactions
 on Sensor Networks (TOSN) 11.3 (2015): 1-27.
- Boubrima, Ahmed, Walid Bechkit, and Hervé Rivano. "On the optimization of wsn deployment for sensing physical phenomena: Applications to urban air pollution monitoring." Mission-Oriented Sensor Networks and Systems: Art and Science. Springer, Cham, 2019. 99-145.