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Abstract—Recent advances in low-power long-range commu-
nication schemes such as LoRa have opened up new potentials
in large-scale Internet-of-Things (IoT) applications, especially
environmental monitoring. However, the versatile environment
and the long traveling distance have imposed significant chal-
lenges to maintenance. Previous research has shown that higher
temperature exponentially accelerates electronics failure rates.
The maintenance cost can take as much as 80% of the total
deployment expenses if not managed carefully. In this paper, we
formulate a sensor deployment problem to preventively minimize
maintenance costs while ensuring tolerable sensing quality and
complete connectivity. We are the first to derive a maintenance
cost model for IoT networks considering thermal degradation and
battery depletion. To assess the spatial phenomena of interest, we
adopt the sensing quality metric based on mutual information.
While the proposed problem is non-convex, we bring up a relaxed
form and solve it with SNOPT. We further apply two population-
based metaheuristics, i.e. Particle Swarm Optimization (PSO)
and Artificial Bee Colony (ABC) algorithm, to approximate
the optimal solution. Extensive simulations are performed on
two real-world datasets of the Southern California region in
the US. Our metaheuristics save up to 40% of maintenance
cost compared with existing greedy heuristics under the same
acceptable sensing quality.

Index Terms—Environmental Monitoring; Maintenance Cost;
Sensing Quality; Metaheuristic.

I. INTRODUCTION

The emerging Low-Power Wide Area Networks (LPWAN)
technologies have opened up new possibilities for large-scale
Internet-of-Things (IoT) applications. LoRa, as a typical LP-
WAN technique designed for IoT, is able to span up to 10 km
with approximately 4.5 years lifetime on a 2 Ah battery [1].
Nearly a quarter of overall thirty billion IoT devices are
assumed to be connected through LPWAN [2]. One promising
direction of such large-scale IoT is environmental monitoring.
Compared to event monitoring that focuses on several point-
of-interests, there is more potential in providing a fine-grained
distribution map of the interested phenomenon across an en-
tire region. Examples of such continuous phenomena include
temperature and particle concentration, which are essential for
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applications like Smart City [3] and Smart Agriculture [4].
Since we are only able to deploy a finite number of sensors
into a field, a sophisticated decision process is required to
select the location set from a continuous space. Previous
works also optimized the communication cost [5] and network
lifetime [6] during sensor deployment. However, the aspect of
maintenance cost is overlooked by existing literature. In this
paper, in contrast to previous works, we pay major attention
to optimizing the expenses in fixing hardware failures of a
deployed IoT network.

Maintenance cost is playing an increasingly significant role
in large-scale environmental monitoring. Previous research
has shown that higher temperature exponentially accelerates
electronics failures [7], [8]. Without careful management, the
maintenance cost can reach up to 80% of the total expenses
in deploying IoT [9]. More concretely, Cisco estimated that
for every 100K devices, $3.2M/year will be spent in adminis-
trative labor and technical support due to system failures [9].
Regarding environmental monitoring, our colleagues running
the HPWREN, an educational sensor network covering the
Southern California region [10], shared that a vast majority
of effort is spent in maintaining the network, especially after
extreme weather conditions. A lot of base stations and sensors
are positioned at elevated spots for good signal strength, which
makes them even harder to reach. All of these efforts do not
count the long geographical distance to travel to the deployed
spot. Maintenance investment has become a critical bottleneck
for IoT network deployment. To improve the situation, existing
works have proposed to place redundant devices at critical
nodes so that the network is more fault-tolerant [11]. While
this idea could temporarily mitigate the maintenance burden,
it does not solve the inherent problem. In this paper, we
explore how to design a reliable IoT network by modeling the
maintenance cost and optimizing it from the very first step of
deployment.

The intuition of the maintenance cost-oriented deployment
can be explained with a motivating example. Suppose the
target is to deploy a sensor into a 1D space where the sensing
quality and maintenance cost over the continuous space are
shown in Fig. 1. Sensing quality reflects the information gain
by placing the sensor, while maintenance cost is determined by
the mean time to failure (MTTF) of a device, i.e. the expected
time to failure. Given the cost to fix per failure, the lower
the MTTF is, the higher the maintenance cost is. The detailed
procedure to compute sensing quality and maintenance cost
will be explained later. In the example, the sensing quality and
MTTF distributions are generated in a plausible manner based
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Fig. 1: Comparison of our maintenance cost-oriented sensor
solution and traditional sensing quality-oriented solution.

on our observations on real-world datasets. Traditional sensor
deployment solution purely searches for the best sensing
quality. However, as shown in Fig. 1, the traditional solution
disregards the maintenance cost which depends on the ambient
temperature, the power of a device, the routing path in a
network, etc. The maintenance cost of the traditional solution
is expensive albeit the great sensing quality. In contrast, our
solution is better as it trades sensing quality for maintenance so
that the deployed sensor has much longer MTTF while could
still estimate the global distribution with acceptable precision.

In this paper, we study the optimization problem of placing
static sensors into a continuous 2D space for environmental
monitoring. To argue the spatial informativeness of a sensing
location to the global knowledge, we adopt the sensing quality
metric in [12], which is defined as the uncertainty reduction
in predicting sensing readings at unmonitored locations, given
a current sensor deployment. Here the sensing variables are
modeled as Gaussian Process. The original work of [12]
selects a subset of candidate locations to place sensors. In
our formulation, we improve their work by considering a con-
tinuous candidate space and possible noises in observations.

The contribution of this paper is four-fold:
• To the best of our knowledge, we are the first to develop a

formal model of maintenance cost for an IoT network. We
focus on permanent failures including electronics failures
and battery depletion. To accurately predict the MTTF
and battery depletion time, we employ state-of-the-art
thermal aging, battery lifetime and power models, all
incorporating the exponential temperature factor.

• We rigorously formulate a sensor deployment problem
optimizing for minimum maintenance cost while satisfy-
ing acceptable sensing quality and complete connectivity.
Although the problem is non-convex and nonlinear, a re-
laxed version is brought up and solved with a commercial
optimizer.

• To approximate the optimal solution within limited time,
we apply two metaheurisitcs based on Particle Swarm
Optimization (PSO) and Artificial Bee Colony (ABC)
Optimization using our own fitness function.

• We conduct extensive simulations in the Southern Cal-
ifornia region based on two historical datasets from
PurpleAir [13]. Our results show that the proposed meta-
heuristics save up to 20% and 40% maintenance cost in
comparison to greedy heuristics on the two datasets.

The rest of the paper is organized as follows: Section II
reviews existing literature in sensor deployment and reli-
able IoT networks design. In Section III, we introduce our
novel model for maintenance cost considering thermal factors.
Section IV describes the methodology to estimate sensing
quality. Integrating the models in Section III and IV together,
we rigorously formulate a sensor deployment optimization
problem and bring up its simplified convex form in Section V.
Two metaheuristics are implemented as in Section VI and
exhaustively tested in simulations based on real-world datasets
in Section VII. Finally, the paper concludes in Section VIII.

II. RELATED WORK

A. Sensor Deployment for Environmental Monitoring

Traditional research on sensor deployment started from
binary event detection, which reports 0 or 1 indicating a
successful detection or not. By assuming a disc-like sensing
model, either binary or probabilistic, they aimed to monitor the
target area with the least number of sensors [14]. Later works
imposed practical constraints to the original formulation (e.g.
communication [5], lifetime [6]), or transformed the problem
into a multi-objective optimization [15]. However, the original
event detection model cannot adapt to current environmental
monitoring applications that output a continuous reading, e.g.
temperature or particle concentration. In such a situation, the
goal of sensor deployment shifts to placing sensors at the most
informative positions.

Krause et al. [12], [16] first provided theoretical support for
continuous-reading sensor deployment. Given pre-deployment
data, they modeled sensor readings at a collection of discrete
locations by Gaussian Process (GP). After defining sensing
quality from mutual information, they formulated the sensor
deployment problem as finding a subset from the candidate
locations for best sensing quality and minimum communica-
tion cost. In [16], the authors provided a rigorous proof on the
NP-completeness of the problem. They demonstrated that their
polynomial-time heuristic pSPIEL is at most a constant factor
worse than the optimal solution. For evaluation, a proof-of-
concept experiment is conducted for indoor illumination and
temperature, showing pSPIEL achieves less prediction error
and communication cost than other greedy methods.

Utilizing the GP model, multiple following works studied
sensor deployment for concrete applications. Wu et al. [17]
directly applied the greedy mutual-information maximization
algorithm to soil moisture monitoring. Du et al. [18] made
an effort on deploying wind sensors at the most informative
positions based on simulation results from Computational
Fluid Dynamics. Recent works by Boubrima et al. [19] studied
selecting the minimum number of grid points to ensure con-
nectivity and sufficient monitoring accuracy for urban air mon-
itoring. Values at non-monitored positions are estimated via
interpolation. Benefiting from the linear interpolation equation,
they ended up with an Integer Linear Programming problem
and solved it by CPLEX.

While these works strove for both theoretical and practical
progress, they present the following drawbacks: (i) Their
methods required a set of discrete candidate locations as they
claimed that sensors can only be installed at certain positions,
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e.g. lampposts. Considering the emerging technologies in
durable batteries and low-power designs, this restriction can
be omitted. (ii) All of the previous methodologies assumed
noise-free sensors which is impractical in the real world.
(iii) They failed to consider lifetime and reliability factors
which are increasingly critical in large-scale deployments. In
this paper, we address all of the above shortcomings. We
consider sensor deployment problem in a continuous space
with noisy observations. Moreover, for the first time, we
construct a maintenance cost model for a complete network.

B. Reliability-Oriented Design in IoT Networks

As IoT networks scale up, maintenance cost will gradually
replace installation cost as the dominant role in expenditure.
However, only a few of existing work takes maintenance cost
or reliability into account. Divergence in previous literature
happens as reliability involves multiple aspects from hardware
to software, from wireless link quality to environmental un-
certainties, and also deployment strategies [20]. In terms of
reliable sensor placement, a large number of existing works
explored the k-coverage problem, i.e. any target needs to be
covered by at least k sensors, where k is a predetermined
constant [5], [6], [11]. Such a mechanism guarantees reliable
event monitoring in that failure of any k − 1 nodes will not
impede successful sensing.

Apart from enhancing monitoring reliability, another group
of literature focused on reliable data transmission, namely the
m-connectivity problem [21], [22]. Bhuiyan et al. [21] studied
the multi-objective sensor placement problem for structural
health monitoring, optimizing for sensing quality, communi-
cation cost as well as network lifetime. The m-connectivity
constraint, i.e. any edge device should be assured to have
m disjoint paths to the sink, is imposed on the optimization
problem. Specifically, the authors proposed a three-step sensor
placement heuristic with separate stages for high-end nodes,
low-end nodes, and redundant nodes. They also come up with
a recovering algorithm that efficiently determines alternative
routing paths when device or link faults happen.

All of the above-mentioned works contribute to a robust IoT
network design from the deployment aspect. Their key idea is
to insert redundancy into the network to provide better fault
tolerance when any failure occurs. However, this redundancy
comes with a higher cost and more effort in both installation
and maintenance. Broken devices still need repair or replace-
ment at the end, therefore increasing redundancy does not
reduce maintenance cost. To the best of our knowledge, none
of the previous work has approached the reliable IoT network
design from limiting potential maintenance expenditure. In
this paper, we aim to optimize deployment strategies which
preventively minimize the estimated maintenance cost. We
rigorously formulate a maintenance cost model taking state-
of-the-art thermal degradation model, battery depletion model,
and power model into account.

III. MAINTENANCE COST MODEL

The proposed model interprets how much effort is needed
to maintain a complete IoT network. Taking hardware budget

TABLE I: Important notations used in problem formulation.

Symbol Meaning
S A convex 2D deployable space
A A set of candidate locations to deploy sensors
V A set of reference locations to evaluate sensing quality
m Number of candidate locations, i.e. |A|
n Number of reference locations, i.e. |V|
RM The ratio of maintenance cost
cbat, cnode Cost for battery and node replacement
RMTTF The ratio of electronics mean-time-to-failure
Rbat The ratio of battery lifetime
Tamb Ambient temperature
P Power consumption of a node
Tc Core temperature inside the chip
Tref Standard ambient temperature of 25 °C
Pref Standard power of 165 mW
Tc,ref Standard core temperature at Tref and Pref

Vdd Supply voltage of battery
Cap Initial capacity of the battery
f Clock frequency of the SoC system
c Location of the sink
r Allowed communication range of sensors
Γ(p) Set of neighbors of node p
dpd Euclidean distance between node p and q
gpq Flow quantity from node p to q
B Communication bandwidth on the link
T Uniform sampling interval
R Generated data size of each sample
F (A) Sensing quality function given A
σ2
n Variances of potential sensing noises
Q Predetermined sensing quality threshold
Fit(A) Fitness function used in metaheurstics
Pe Penalty to each unconnected node in Fit(A)

into account, we are only able to deploy m sensors in the
field considering hardware installation budget. The network is
uniquely determined by the sensor deployment, which is a set
of locations A = {ai | ai ∈ S, i = 1, ...,m} to place sensors.
All the locations belong to a convex 2D space S, which is
also the area to be monitored. For ease of understanding,
we summarized important symbols used in our formulation
in Table I.

In general, possible failures in IoT networks include link
failures, software failures and hardware failures [20]. We
recognize that both link and software failures can be avoided
or recovered quickly if designed properly. For example, a
software bug can be fixed by updating firmware remotely.
Sparse and low-rate environmental sensing applications do not
impose a heavy communication burden. Thus our maintenance
cost formulation focuses on permanent hardware faults, which
require repair, component replacement or complete node re-
placement. In this paper, we only consider sensor platforms
powered by single-use batteries and leave energy-harvesting
devices with rechargeable batteries for future work.

The hardware crashes can be attributed to (i) power outage
caused by battery depletion, (ii) electronics failures due to
degradation [23]. When the battery depletes, a battery sub-
stitution is required. If the electronics break down, expert
engineers are called to diagnose and a complete replacement
may be performed in the worst case. Assume the cost for
battery replacement at location p is cbat(p), while the cost for
node replacement is cnode(p), we define the expected average
ratio of maintenance cost for a deployed network A as follows:

RM (A) =
∑
p∈A

cbat(p)

Rbat(p)
+

cnode(p)

RMTTF (p)
, (1)
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Fig. 2: Block diagram of the proposed maintenance cost
model given a deployment A and an underlying temperature
distribution Tamb.

where Rbat is the estimated ratio of battery depletion time
compared to an identical battery working under the standard
environment (i.e. Tref = 25 °C and Pref = 165 mW).
Similarly, RMTTF is the estimated ratio of electronics’ mean
time to failure in conmparison to its corresponding value in the
standard environment. Since Rbat and RMTTF are expressed
in ratios, the resulted RM is also a ratio of maintenance
cost compared to the standard environment. The proportion
of battery replacement cost and node replacement cost can be
adjusted by the ratio of cbat/cnode.

Fig. 2 depicts the block diagram of the proposed mainte-
nance cost model, showing clear dependency among submod-
ules. In the following Sections III-A-III-D, we explain the
specific models used in each submodule. It should be noted
that all the models in this paper aim at estimating the long-
term average of a device node.

A. Electronics MTTF Module

In terms of electronics failures, previous works have thor-
oughly studied reliability models for microprocessors and
validated these models on simulators [8], [24] as well as mo-
bile systems [25]. The commonly studied failure mechanisms
include time-dependent dielectric breakdown, negative bias
temperature instability, electromigration, and thermal cycling.
The temperature factor is extremely important in all of the
mechanisms because the MTTF will be exponentially worse
as temperature increases. In this paper, we adopt the state-of-
the-art MTTF models in [26]. We notice that all of the MTTF
models share a similar form on temperature dependency.
We therefore extract this uniform dependency and express
RMTTF at core temperature Tc as a ratio to the standard core
temperature Tc,ref :

RMTTF (Tc(p)) = exp(
Ea

kTc(p)
)/ exp(

Ea
kTc,ref

), (2)

where Ea is the activation energy, k is Boltzmann’s constant.
The core temperature Tc is the stabilized core temperature of a
device at location p provided by the core temperature module.
Tc,ref is predetermined also by the core temperature module
at the standard environment of Tref and Pref . Given that
Tc depends on both ambient temperature and power, RMTTF

relies on the location and the ambient temperature distribution
over the terrain, as well as the power and the routing graph.

B. Battery Depletion Module

To account the thermal effect on chemical reaction rate
inside the battery, we use the T-KiBaM model proposed by

Rodrigues et al. [7] to estimate the battery lifetime. T-KiBaM
assumes two charge tanks (i.e. available charge and bound
charge) to model the behavior of high-capacity lead-acid
batteries. The available charge tank holds the electrical charge
that can immediately supply the load, while the bound charge
tank holds the secondary charge flowing towards the available
charge tank. In this way, T-KiBaM successfully characterizes
the non-linear recovery effect, i.e. the battery regains some
of its “lost” capacity during idle periods [27]. The flow rate
between the two tanks is regulated by their height difference
and the temperature. A battery is recognized as empty when its
available charge tank depletes. Let i and j denote the remained
charge in available charge and bound charge tank respectively.
Equation 3 depicts the differential discharging pattern of each
tank, where t denotes for elapsed time. P is the average
power draw from the battery computed by the power module,
and Vdd is the supply voltage. In T-KiBaM, the reaction rate
k is characterized by the Arrhenius Equation (Equation 4)
from the ambient temperature Tamb. Parameters c, A,R,Ea
in Equation 3 and Equation 4 are predefined constants for a
given battery type [7].

di

dt
= − P

Vdd
− k(1− c)i+ kcj.

dj

dt
= + k(1− c)i− kcj.

(3)

k(Tamb) = Ae
− Ea

RTamb . (4)

Suppose i0 and j0 are the initial capacity of each charge
tank at t = 0. The total maximum capacity of the battery is
Cap = i0 + j0. The battery lifetime Lbat (i.e. the instant
that the available charge tank depletes) can be calculated
as: Lbat(P, Tamb) = min t s.t. i(t, P, Tamb) ≤ 0. The
authors of [7] offered an iterative algorithm to carry out
this computation. Notice that P and Tamb both depend on
the deployed location p in our model. Our battery depletion
module outputs the battery lifetime in a ratio to its standard
lifetime under Tref and Pref :

Rbat(P (p), Tamb(p)) =
Lbat(P (p), Tamb(p))

Lbat(Pref , Tref )
. (5)

C. Power Module
The power consumption of a sensor determines not only its

battery lifetime but also the degradation rate. Estimating power
is complex since power strongly correlates to (i) sensor dis-
tribution that influences transmission distances, (ii) workload
settings such as sampling rate and routing decisions, (iii) chip
temperature which exponentially affects power leakage. Thus
the power model should depend on the sensor deployment A,
the specific location p, and the core temperature Tc.

The overall power consumption of a node can be categorized
as the power of the systems-on-chip (SoC) (PSoC), the com-
munication power (Pcomm), and the power of other peripherals
(Pper). We express the power of a node as in Equation 6 and
explain the model for each piece in the following lines.

P (A, p, Tc) = PSoC + Pcomm + Pper. (6)

The power of the SoC system is composed of dynamic
power pd and leakage power ps (which is also called static
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power) [28]. Dynamic power is resulted from the logic gate
switching while leakage power is strongly affected by temper-
ature. It is highly necessary to consider leakage power as it
can account as much as 50% of the total power consumption
using current CMOS technologies [28]. In this paper, since
we mainly focus on the effect of temperature, we simplify the
state-of-the-art SoC power model in [29] as:

PSoC = pd + ps = aV 2
ddf + Vdd(bT

2
c exp

c

Tc
+ d). (7)

Hereby, Vdd and f are the supply voltage and the clock
frequency of the core respectively, while Tc is the core tem-
perature in Kelvin. The constants a, b, c and d are hardware-
specific parameters.

In terms of the communication power model, we modify
the state-of-the-art energy model for general low-power sensor
nodes in [30]. Suppose each sensor reports R Bytes of data
in a uniform interval T . Without loss of generality, we use
gpq to denote the flow quantity from node p to q. The
Euclidean distance between p and q is dpq . Node p can be
directly connected to q if q locates in p’s disc-like binary
communication range. We define a set of reachable nodes as
neighbors, namely Γ(p) = {q ∈ S where dpq < r}. The
communication range r is determined according to specific
hardware capabilities. The average communication power of
a sensor given a deployment A and a specific location p ∈ A
can be expressed as follows:

Pcomm =
1

T

 ∑
q∈Γ(p)

Ptx(p, q)
gpq
B

+
∑
p∈Γ(q)

Prx
gqp
B

+ Pco.

(8)

Ptx(p, q) = pto + kdαpq. (9)

The communication power is composed of transmission power
(Ptx), reception power (Prx), and ambient power (Pco) that
counts for activities such as sleep, synchronization, etc. Lever-
aging the energy model in [30], we use constant Prx while
Ptx is characterized by the transmission distance due to the
energy consumption of power amplifiers (Equation 9). Here α
is the path loss exponent while k is a predetermined constant
depending on channel attenuation and specific modulation
techniques. pto is the constant power consumed by transmis-
sion circuits. We use the typical values in [30] for Prx, Pto, k
and α. The transmission and reception time are characterized
by the flow quantity gpq and bandwidth B.

Finally, the peripheral power can largely vary between
specific peripheral types. The peripheral can take the form
of a periodic sensor, a continuously operating actuator, etc.
Thus, we leave Pper in Equation 6 in a general form.

D. Core Temperature Module

In the above content, we explained models to estimate
electronics MTTF, battery lifetime and power consumption.
There is still one missing component: Equation 2 and 7 use
the core temperature Tc while we only have the location-based
ambient temperature Tamb(p) as input. To convert the ambient
temperature to the stabilized core temperature, we employ the

Fig. 3: The cumulative distribution of ambient temperature over
one year at two different locations, which are 20 km apart. The
temperature distribution data is downloaded from PurpleAir for
Southern California, US [13].

latest thermal model in [31] that presents a linear iterative
form within discrete-time space:

Tc[t+ 1] = ATc[t] +BP [t] + CTamb[t]. (10)

Here t is the discrete time stamp. Tc, Tamb and P refer to
core temperature, ambient temperature, and the overall power
consumption given by Equation 6 respectively. A,B and C
are constant parameters obtained by fitting into experimental
results. It can be seen that the core temperature Tc and the total
power P depend on each other. Therefore, we implement an
iterative algorithm that calls the power function and the core
temperature function repeatedly until convergence, as shown
in Fig. 2. The algorithm reports the stabilized value of each,
which is an estimation of their long-term averages. Tc,ref is
also calculated by a similar routine using Tref and Pref .

E. Maintenance Cost under Temperature Variations over Time

With the model described above, we are able to estimate
the maintenance costs of a given IoT network based on the
power of a device P (p) and the ambient temperature Tamb(p)
at location p. However, the ambient temperature distribution
varies not only over space but also over time. Fig. 3 depicts
the temperature distribution over one year time horizon at two
locations that are 20 km apart. It can be seen that while the
average temperature at location A and B is 14 °C and 22 °C,
the max temperature at each location could be much higher. In
10% of the time, location B experiences a temperature higher
than 30 °C. To account the temperature variations over time,
we compute the expectation of RMTTF and Rbat at location q
using the integral in Equation 11. For simplicity we use P and
Tamb in abbreviation of P (q) and Tamb(q) respectively. pTamb

is the probability associated with the temperature distribution
at location q.

RMTTF (q) =

∫ ∞
−∞

RMTTF (Tc(P, Tamb)) pTamb
dTamb

(11a)

Rbat(q) =

∫ ∞
−∞

Rbat(P, Tamb)pTamb
dTamb (11b)

The output of Equation 11 are fed to the maintenance cost
evaluation function depicted in Equation 1. Fixing the battery
and power settings, location B in Fig. 3 results in 0.9x MTTF
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and 1.1x maintenance cost compared to location A. In other
words, even though the average ambient temperatures are
similar, the maintenance costs at this single node could be 10%
different purely due to the ambient temperature variations.
Referring back to the Cisco’s case study, such percentile
difference in maintenance costs is equivalent to $320K/year
per 100K devices by Cisco’s estimates [9].

IV. SENSING QUALITY EVALUATION

In this section, we provide the background in reasoning
about sensing quality from the spatial distribution of the
network. We consider deploying devices into a convex 2D
space S ⊆ R2 for monitoring physical phenomenon. We are
only able to deploy m devices in the field.

Suppose A is the selected deployment locations while V is a
set of reference locations that are unmonitored. XA and XV are
the random variables denoting sensor readings associated with
A and V . By deploying sensors at A, the goal is to predict XV
as accurate as possible with XA. We use the sensing quality
metric defined in [12] and their corresponding computation:

F (A) =
H (XV)−H (XV | XA)

H (XV)
, (12)

where H (XV) is the entropy of XV , H (XV | XA) is the
conditional entropy of XV given XA. Therefore, H (XV) −
H (XV | XA) is the mutual information between XV and XA,
which is the amount of information obtained about XV through
observing XA. It can also be interpreted as the uncertainty
reduction in the predictions at V given the observations at A.
We divide the mutual information by H (XV) to normalize
it and define the resulting expression as the sensing quality,
which is a real number between 0 and 1. Here, 1 refers to
the best sensing quality and 0 means the worst. As a concrete
example, F (A) = 1 indicates that we can predict the readings
at V with deployment A with 100% accuracy. F (A) = 0.1
means that by deployment A we can reduce the uncertainty in
predicting XV by 10% compared to its original uncertainty.
The work in [12] selects a subset from discrete candidate
locations to obtain the best sensing quality at non-selected
spots. In contrary, our target is to monitor a continuous space
while the candidate space is also continuous. Therefore, we
employ a uniformly distributed set of locations V to reason
the sensing quality of the entire region given a deployment
A. V is obtained by dividing S into n fine-grained grids and
including the center of each grid.

Assuming each variable xp at location p ∈ S follows
a Gaussian distribution, we are able to estimate the mean
and covariance of the distribution at a non-monitored loca-
tion, conditioned on the measurements at monitored locations
through Gaussian Process (GP). Note, that for non-Gaussian
phenomenon, we can split the time axis into smaller frames
and consider the distribution of each frame as GP separately
[18]. A GP consisting of n Gaussian-distributed variables is
completely specified by a mean vectorM∈ Rn and a covari-
ance matrix Σ ∈ Rn×n. For simplicity we use ΣV A ∈ Rn×m
to denote a covariance matrix between V = {v1, v2, ..., vn}
and A = {a1, a2, ..., am} whose (i, j) entry is the covari-
ance between xvi and xaj . Covariance matrices ΣAA,ΣV V

and ΣAV are defined according to similar rules. The Radial
Basis Function (RBF) kernel is employed to estimate the
covariance between two undeployed locations based on the
distance between them (Equation 13). To better characterize
the correlation between sensors at unmonitored locations, we
use pre-deployment data to fit σ.

ΣV Ai,j
= K(xvi , xaj ) = exp(−‖vi − aj‖

2

2σ2
). (13)

Given sensor observations XA, the value distribution of XV
conform to a Gaussian distribution whose conditional mean
MXV |XA and covariance ΣXV |XA are given by

MXV |XA = ΣV A[ΣAA + σ2
nI]−1MXA , (14a)

ΣXV |XA = ΣV V − ΣV A[ΣAA + σ2
nI]−1ΣAV , (14b)

where MXA is the average sensor readings at A. The form
in Equation 14 is slightly different from [12]: we include the
potential independent identically distributed (i.i.d.) Gaussian
noise ε with variances σ2

n on sensing. Such adjustment better
describes the practical environment where sensor readings
suffer from drifting or interference. Finally, to compute the
sensing quality, a closed form of conditional entropy can be
inferred depending solely on the determinant of ΣXV |XA :

H (XV | XA) =
1

2
log((2πe)n

∣∣ΣXV |XA

∣∣). (15)

V. PROBLEM FORMULATION

The goal of sensor deployment is to obtain a deployment
plan A that gives the minimum maintenance cost while
ensuring acceptable sensing quality at reference locations V
and complete connectivity. We formulate the connectivity
constraint as a network graph problem. A functional sensor
network should be able to deliver the data originating from
each node to the sink through multi-hop routing. Benefiting
from LoRa’s long communication range, a large number of
IoT devices can be covered by a single sink and with a
simple star topology [1]. Therefore, we assume a sink is set
up at location c to collect periodic updates from all deployed
sensors, while the same methodology can be easily adapted to
the multi-sink case. We do not consider base station (or router)
placement in this paper because the position to set up base
station needs careful considerations like sufficient elevation
and power supply.

Employing all of the models above, we are able to rigor-
ously formulate the sensor deployment problem as follows.

min
A

RM (A) (16a)

s.t. (1), (2), (3), (4), (5), (6), (7), (8), (9), (10)
(12), (13), (14b), (15),
F (A) ≥ Q (16b)∑
q∈Γ(p)

gpq −
∑
q∈Γ(p)

gqp = R, p ∈ A (16c)

∑
q∈Γ(c)

gqc = mR, q ∈ A (16d)

A ⊂ S, |A| = m (16e)
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Equation 16b enforces the sensing quality to be greater than a
lower bound Q. We refer to this bound as the sensing quality
threshold. Equation 16c and 16d ensure each deployed sensor
generate a data unit in the network and all sensor readings are
converged to the sink.

The formulated problem is a non-convex nonlinear opti-
mization problem. To get the lower bound of the optimum,
we first derive an approximated and relaxed version of the
problem that can be solved with commercial optimization
solvers. Considering a single sensor, its maintenance cost
model (Equation 1), electronics MTTF model (Equation 2)
and power model (Equation 6, 7, 8, 9) are inherently convex.
According to our observations, the ambient temperature distri-
bution is almost always non-convex but can be approximated
well with high-order polynomials in the 2D space. For the bat-
tery model (Equation 5), we fit a concave polynomial surface
with parameters P and Tamb. To have a linear approximation
for the core temperature, we use the state-space formulation
in Equation 10 and find the time step tss where temperature
reaches a steady-state. We unroll the list of linear equations
until time step t = tss and calculate the coefficients of P and
Tamb. We break the mutual dependency between power P and
core temperature Tc by assuming a constant Tc in Equation 7.
Finally, we borrow the probabilistic sensing model from [32]
as a simplified sensing quality model:

Fs(A) =
∑
a∈A

∑
v∈V

e−λ1dav −
∑
a1∈A

∑
a2∈A,a2 6=a1

e−λ2da1,a2 .

(17)
Even with above relaxations, jointly optimizing the loca-

tions of m sensors is still an unfeasible non-convex problem.
On the other hand, the problem of optimally adding a single
sensor to an existing set of deployed sensors is a simpler, well
structured problem. Instead of solving the original problem, we
can solve an optimization problem for the deployment of each
sensor. With this approach and all the above modifications,
we obtain an approximation but solvable form of the original
problem named as sOPT. sOPT sequentially determines the
location to place each sensor. Each step is a non-convex
subproblem, but a global optimal location can be found (per
subproblem) if the temperature distribution function is not too
complex. We solve sOPT with SNOPT (Sparse Nonlinear OP-
Timizer) [33] and use its solution as a baseline for comparison
to the following heuristics.

VI. METAHEURISTIC DESIGN AND IMPLEMENTATION

Swarm Intelligence has triggered the creation of lot of
efficient searching heuristics in high-dimensional space. In-
spired from the nature, population-based metaheuristics em-
ploy a group of individuals to search the space while each
individual communicates globally about the current optimal
solution. Such collective intelligence usually ends up with a
sufficiently good solution for non-convex problems. Typical
swarm algorithms include Particle Swarm Optimization (PSO)
[34], Artificial Bee Colony (ABC) algorithm [35], and Ant
Colony Optimization [36], all of which have been applied to
sensor deployment problems in previous literature [37]–[39].
In our problem, the deployment solution A ∈ Rm×2 can be
viewed as a point in a continuous high-dimensional space.

Therefore we apply PSO and ABC which are well-suited for
continuous-space problems, to search the solution space.

A. Fitness Function Design

Both PSO and ABC rely on a fitness function to evaluate
the quality of a solution. The fitness function should accurately
reflect the optimization goal and constraints. Here, we use a
linearly weighted form of (i) maintenance cost, (ii) sensing
quality, and (iii) connectivity as follows.

Fit(A) = w1RM (A) + w2 max(Q− F (A), 0) +

w3Pe |unconnected nodes| ,
(18)

where w1, w2 and w3 are weighting parameters for the trade-
off between three objectives, w1 + w2 + w3 = 1. The first
term in Equation 18 is the maintenance cost objective. The
second term penalizes the gap if the sensing quality fails to
satisfy the threshold. Finally, we add a large penalty Pe to
each unconnected node, i.e. the nodes which locate outside
of the permitted transmission range r thus are disconnected
to the rest network. |unconnected nodes| returns the number
of unconnected nodes. Since A ∈ Rm×2 is a set of locations
without any connectivity information, in the fitness evaluation,
we attempt to construct a Minimum Spanning Tree (MST)
from A with all connectable nodes. The generated MST is
used as the network topology in maintenance cost evaluation,
while the number of isolated nodes from the sink impose the
corresponding amount of penalty on the fitness value. The
overall objective is to minimize the fitness value.

B. PSO-based Metaheuristic

Particle Swarm Optimization is initially inspired by bird
flocks searching for corns. In PSO, a group of particles are
randomly placed into the space at first. The location of each
particle is a potential solution fed into the fitness function.
At every iteration, each particle moves towards a direction
determined by its personal best and global best locations with
the minimum fitness value, with some random perturbations.
Specifically, suppose the location of the ith particle at iteration
t is x(t) ∈ Rm×2 while its velocity is v(t) ∈ Rm×2. p(t)

i is the
ith individual’s optimal location so far, and p(t)

c is the global
optimal location. In our implementation, we leverage the PSO
with constriction factor introduced by [40]. The velocity and
location of particle i for the next iteration is updated as:

v
(t+1)
i = χ

{
v

(t)
i + r1c1(p

(t)
i − x

(t)
i ) + r2c2(p(t)

c − xi(t))
}
,

(19a)

x
(t+1)
i = x

(t)
i + v

(t+1)
i , (19b)

where χ is the constriction factor taking a value of approxi-
mately 0.729. r1, r2 ∈ (0, 1) are random numbers, while c1, c2
are acceleration coefficients. The complete procedure of the
PSO algorithm is stated in Algorithm 1.

C. ABC-based Metaheuristic

Similar to PSO, Artificial Bee Colony Algorithm is origi-
nally brought up to imitate honey bees’ foraging behaviors.
ABC has three key elements:
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Algorithm 1 PSO Algorithm

1: Initialize a population of particles with random locations
and velocities in the solution space.

2: loop
3: for all particles do
4: Update location and velocity as Equation 19.
5: Evaluate its current fitness as Equation 18.
6: Compare and update the personal best of the current

particle and the global best solution.
7: end for
8: If a criterion is met (a sufficiently good fitness or a

maximum number of iterations), exit loop.
9: end loop

(i) Food Source: food sources are potential solutions of the
desired problem, namely deployment plan A in our case.
Each food source is associated with a “profit” obtained
from the fitness function.

(ii) Employed bees: every employed bee is coupled with
a food source. In each iteration, employed bees are
expected to explore an adjacent random food source of
the current exploiting one and return with the information
about its profitability.

(iii) Unemployed bees: there are two types of unemployed
bees, i.e., onlookers and scouts. Onlookers set out to
an existing food source according to the information of
profitability from employed bees. With roulette wheel
selection [41], a more beneficial food source will be
explored with higher probability. On the other hand, an
employed bee transforms to a scout once its related food
source is “abandoned”. In other words, the food source
is reinitialized if explored more than a certain amount
of times without showing any progress. The scouts will
randomly search new food sources in the space.

A complete flow of the ABC algorithm is described in Algo-
rithm 2. It can be seen that, ABC introduces more randomness
than PSO with the food source discard. The tuning of the
exploring upper limit is critical to the performance of ABC.

Algorithm 2 ABC Algorithm

1: Initialize a population of bees associated with random
locations in the solution space.

2: loop
3: Move the employed bees onto their random food

sources near the associated location and determine the
profit.

4: Move the onlookers onto their random food sources
near the associated one and determine the profit.

5: If a food source is abandoned, move the scouts for
searching new sources.

6: Update the best solution so far.
7: If a criterion is met (a sufficiently good fitness or a

maximum number of iterations), exit loop.
8: end loop

TABLE II: Parameter settings in simulation.

Param. Value Param. Value Param. Value
r 10 km B 1 kbps R 100 B
σ2
n 10 cbat 10 cnode 100

Vdd 3.3 V Cap 2 Ah f 300 MHz
Pto 520 mW k 10−4 α 3.5
Prx 200 mW Tref 25 °C Pref 165 mW

VII. SIMULATION ON REAL-WORLD DATASET

In this section, we present and discuss the simulation results
based on two large-scale real-world datasets.

A. Experiment Setup

We implement our maintenance model and sensor de-
ployment approach in MATLAB R2020a1. Simulations are
performed on a Linux desktop with Intel Core i7-8700 CPU
at 3.2 GHz and 16 GB RAM. To estimate the underlying
distribution of the phenomena, we use the environmental
monitoring history from PurpleAir [13] as the pre-deployment
data in the simulations. The dataset contains sensor readings of
temperature, humidity, and air particle (i.e. pm1, pm2.5, pm10)
concentrations every 10 minutes. We simulate all deployment
methods on a small and a large region in Southern California,
US. For the small region of 30 km × 50 km, the pre-
deployment data constitutes of 27 sensors with reading history
from January 1, 2019 to February 20, 2020. In terms of the
larger region of 60 km × 100 km, we use the data of 264
sensors from January 1, 2019 to April 1, 2020.

Without loss of generality, we assume the sink locates at
the center of the target region. For peripheral, we consider
a periodic sensor with the peripheral power characterized as
follows:

Pper = psensortsen/T, (20)

where psensor = 200 mW is the active power draw of the
sensor peripheral, tsen = 300 ms is the delay to update data
samples and T = 10 s is the sampling interval. We summarize
the detailed parameter settings of our maintenance model in
Table II. For the fitness function, we set w1 = 0.5, w2 =
0.4, w3 = 0.1, Pe = 100.

B. Baseline Setup

For comparison, we employ the following baselines and
compare their output of maintenance cost with the same fixed
sensing quality threshold:
• Information-Driven Sensor Querying (IDSQ) [42]:

Starting from nodes adjacent to the sink, IDSQ greedily
selects one reachable location from the candidate set V in
each iteration. The goal is to maximize a weighted form
of sensing quality and maintenance cost gain. It termi-
nates once the pre-determined sensing quality threshold
is satisfied. Equation 21 describes selecting location pj
in iteration j where pprev = {p1, ..., pj−1} is the existing
set generated from previous selections. We set α = 0.6.

pj = arg max
p

α [F ({pprev, p})− F (pprev)]−

(1− α) [RM ({pprev, p})−RM (pprev)] .
(21)

1The source code is available at https://github.com/Orienfish/AQI-deploy.

https://github.com/Orienfish/AQI-deploy
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(a) Prediction of ambient tempera-
ture (°C) over the region.

(b) Deployment solution provided by PSO
with Rbat of each node represented by the
radius.

(c) Deployment solution provided by PSO
with RMTTF of each node represented by
the radius.

Fig. 4: Visualization of simulation on the small region. Red node is the sink and blue nodes are sensors. The battery lifetime and electronics
MTTF values are ratios to their corresponding values in the standard environment.

• Padded Sensor Placements at Informative and cost-
Effective Locations (pSPIEL) [12]: pSPIEL uses padded
decomposition to divide candidate locations into clusters
and greedily selects a subset from each cluster. The
greedy rule is reaching minimum communication cost
after satisfying the sensing quality threshold. We inte-
grate pSPIEL into our simulation based on the toolbox
offered by the original authors [43]. The candidate set
is configured as V , and the communication cost D(p, q)
between any two node p, q is defined as follows:

D(p, q) = dpq + [dpq < r]Pe, (22)

where [cond] gives 1 when the inner condition cond is
met, otherwise 0.

• sOPT: Given the sink node, sOPT sequentially adds a
single sensor in each iteration. Each sensor is placed
greedily to minimize its own maintenance cost while
satisfying the sensing quality requirement. The solution
at each iteration is calculated by SNOPT [33] solving
the relaxed form of the problem described in Section V.
SNOPT can handle well-structured non-linear non-convex
problems as long as the function is smooth. However, due
to the complexity in searching for the optimal solution,
it cannot converge for very large problems, so we could
only experiment with sOPT in the small-scale simulation.

C. Simulation Results on a Small Region
Visualization. On the small-scale region of 30 km × 50 km,

we intend to place 16 sensors. Reference locations are set to
the center of 6×8 grids, with the predicted average temperature
distribution by GP at each of them shown in Fig. 4a. Notice,
that while Fig. 4a shows the average value at each location, our
maintenance model takes the whole temperature distribution
over time as input (see explanations in Section III-E). As
a visualization, we present the deployment solution of PSO
and the predicted Rbat and RMTTF of each node in Fig. 4b
and 4c. We omit the visualization of ABC’s deployment
solution as it presents similar patterns. It can be seen that
the intersection nodes end up with shorter battery lifetime
while the locations with higher average temperature generally
have shorter electronics MTTF. As expected, the generated
deployment solution tends to avoid the zones with harsher
temperature while carefully spreading over the region.

Monitoring various phenomenons. We fix the sensing
quality threshold to 0.1 and run each of IDSQ, pSPIEL, PSO,

ABC and sOPT for 10 times on various phenomenon’s dataset.
Both PSO and ABC employ 20 individuals searching for
30 iterations. PSO and ABC are set to placed 16 sensors.
The maintenance cost per node of resulted deployments are
shown in Fig. 5a. We compare the maintenance cost per node
because IDSQ and pSPIEL do not have a preset sensor counts,
terminating once the threshold is reached. It can be observed
that pSPIEL, PSO and ABC’s solutions are fluctuated since
they all rely on random initialization. IDSQ’s solution is fixed
in each case but it performs the worst. This is because IDSQ
greedily selects adjacent locations without considering the
global distribution of sensing quality and temperature. pSPIEL
discovers much better solutions as it uses padded clustering
to ensure the deployment is well-spread. While IDSQ and
pSPIEL select from the finite grid locations, the proposed
metaheuristics PSO and ABC explore in the entire continu-
ous space, providing closer or even surpassing performance
compared to the relaxed lower boundary given by sOPT.

The detailed improvements normalized to IDSQ’s solution
regarding maintenance cost, battery depletion time and elec-
tronics MTTF are summarized in Table III. For battery and
electronics lifetime, we report both the average and minimum
(i.e. the time when the first device fails). The improvements
on electronics MTTF are relatively not significant because
the temperature is mild in the target region. However, the
pre-deployment data at extreme habitats such as desert is
rare. If testing with a more comprehensive dataset covering
a variety of environments, it is reasonable to expect more
maintenance savings with our proposed methodology. Even
though, our metaheuristics saves up to 20% of the maintenance
cost compared to IDSQ, which transforms to $0.64M/year per
100K devices according to Cisco’s estimation [9].

Trade-offs between sensing quality and maintenance
cost. Exploring the trade-offs between sensing quality and
maintenance cost is a common issue in practical deployment.
Using only the pm2.5 dataset, we examine the maintenance
cost given by each algorithm at various sensing quality thresh-
old. As depicted in Fig. 5b, the resulted maintenance cost per
node increases monotonically as the threshold grows. This is
reasonable as the higher the sensing demands, the wider area to
cover, thus the more expenses in maintenance. Both PSO and
ABC explore better solutions than pSPIEL and IDSQ, while
ABC performs slightly better and more stably than PSO. ABC
also converges faster in our observation.
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(a) Maintenance cost in ratio for monitoring
various phenomenons. The purple dashed
line depicts the solution of sOPT as a higher
boundary of the optimum.

(b) Maintenance cost in ratio to sensing
quality threshold. The purple dashed line
depicts the solution of sOPT as a higher
boundary of the optimum.

(c) Execution time to the number of
deployed nodes.

Fig. 5: Simulation results on the small region.

TABLE III: Average maintenance cost, battery depletion time and
electronics MTTF improvements normalized to IDSQ’s solution on
the small region.

Metric IDSQ pSPIEL PSO ABC
Average Maintenance Cost 1.0 0.84 0.81 0.80

Average Battery Depletion Time 1.0 1.51 1.63 1.64
Minimum Battery Depletion Time 1.0 1.45 1.75 1.66

Average Electronics MTTF 1.0 1.02 1.03 1.03
Minimum Electronics MTTF 1.0 1.02 1.04 1.04

Execution time. We report the execution time of all heuris-
tics, when deploying various number of sensors in Fig. 5c.
Both IDSQ and pSPIEL take less than 20 seconds to finish. We
remind the reader that since IDSQ and pSPIEL select a subset
from a finite candidate location set, their search space is much
smaller than PSO and ABC. Both heuristics are searching in
continuous space, ABC executes two times longer compared
to PSO. This is because each individual in ABC is employed
for two searching trials in one iteration, first as an employed
bee and then as an unemployed bee. More efforts in searching
bring better and more stable performance to ABC.

D. Simulation Results on a Large Region

In order to test our methodology on large-scale monitoring
applications, we select another 60 km × 100 km region to
hold 54 sensors. The selected region covers more versatile
environments including urban and natural areas with more
fluctuated temperature, humidity and air particle levels. The
sensing quality is estimated with 21 × 10 grid-like reference
locations. We experiment and discuss the performance of
IDSQ, pSPIEL, PSO and ABC on the large region. sOPT is
not evaluated due to its exponentially increasing complexity
in finding the optimal solution for larger problems.

Monitoring Various Phenomenons. We first evaluate our
methods on various phenomenons with fixed sensing quality
threshold at 0.05. Due to the complexity of the larger dataset,
we execute IDSQ and pSPIEL for 10 times while test PSO and
ABC for 5 times. Both PSO and ABC employ 10 individuals
searching for 40 iterations. The resulted maintenance cost
per node are reported in Fig. 6a, where we exclude the
result of IDSQ as its maintenance costs are too much to be
depicted in the same scale. Compared with the small region,
the maintenance-cost-per-node of all algorithms increase. Ob-
serving the average maintenance cost, PSO and ABC perform

TABLE IV: Average maintenance cost, battery depletion time and
electronics MTTF improvements normalized to IDSQ’s solution on
the large region.

Metric IDSQ pSPIEL PSO ABC
Average Maintenance Cost 1.0 0.68 0.64 0.60

Average Battery Depletion Time 1.0 0.99 1.04 1.06
Minimum Battery Depletion Time 1.0 1.69 2.29 2.69

Average Electronics MTTF 1.0 1.08 1.09 1.10
Minimum Electronics MTTF 1.0 2.61 2.68 2.80

better than pSPIEL in general. ABC remains remarkable
in both average and stability. In contrast to the simulation
results on the small region, Fig. 6a demonstrates the strong
dependability on phenomenons in large-scale deployment. The
performance gap between PSO, ABC and pSPIEL is larger
for temperature monitoring. The underlying distribution of
phenomenons can have great impacts on the sensing quality
and lead to largely varied maintenance cost.

The detailed ratios to IDSQ’s solution on the large sim-
ulation are summarized in Table IV. It can be observed
that ABC scales better than the rest algorithms on a larger
deployment with versatile environments. Aside from a greater
improvements across all of the metrics compared to the small
simulated case, it particularly shows significant advances on
minimum battery depletion time and electronics MTTF. Such
outcome suggests that our proposed methodology is able to
enhance the reliability of critical nodes at intersections, while
existing greedy heuristics do not take this factor into account.
Overall, the ABC-based heuristics saves 40% of maintenance
cost compared to IDSQ and 12% compared to pSPIEL. It is
equivalent to $1.28M/year and $384K/year for every 100K
devices in Cisco’s estimation [9].

Trade-offs between sensing quality and maintenance
cost. We repeat the same experiments on pm2.5 dataset but
with a varying sensing quality threshold from 0.04 to 0.05. Due
to the increase in scale, the possible sensing quality we can
reach by placing finite sensors becomes lower. The resulted
maintenance cost per node of pSPIEL, PSO and ABC are
summarized in Fig. 6b. Again we omit IDSQ’s result as it
significantly exceeds the scale of the rest three algorithms.
As shown in Fig. 6b, ABC presents the lowest maintenance
cost and the most stable outcome across all test cases. The
maintenance per node given by PSO and ABC is averagely 9%
and 4% better than pSPIEL at all sensing quality thresholds.
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(a) Maintenance cost in ratio for monitor-
ing various phenomenons.

(b) Maintenance cost in ratio to sensing
quality threshold.

(c) Execution time to the number of
deployed nodes.

Fig. 6: Simulation results on the large region.

Execution time. The time consumption of all heuristics
are reported in Fig. 6c when deploying 29, 32, 35, 38 and
42 nodes. All algorithms except pSPIEL require significantly
longer time to compute the deployment on the large region.
pSPIEL also shows an increase in execution time but it still
lasts no more than 30 seconds. Similar as the case on the
small region, ABC takes 2x longer in comparison to PSO
due to more searching trials. IDSQ, differently, explodes up
in execution time and takes longer than ABC in the worst
case. This reflects the poor scalability of IDSQ in large-
scale problems. We recognize that the long execution time
of PSO and ABC come from the complexities in calculating
the maintenance cost. In the future work, we will look into
techniques to accelerate maintenance cost evaluation.

VIII. CONCLUSION

In this paper, we rigorously formulate a large-scale sensor
deployment problem with the objective of minimum mainte-
nance cost in fixing hardware failures. We, for the first time,
propose a quantitative maintenance cost models considering
electronics degradation and battery depletion, all incorporat-
ing the exponential temperature factor. In the meantime, we
integrate the sensing quality metric to evaluate the spatial
informativeness of the deployment with statistical analysis
of pre-deployment data. While the formulated optimization
problem is non-convex and nonlinear, we apply two meta-
heuristics to efficiently search in the high-dimensional solution
space using our own fitness function. The performance of the
metaheuristics are compared with existing greedy heuristics
and a sequential optimal solution. Evaluation results on two
real-world environmental-monitoring datasets show that our
metaheuristics can save up to 40% of the maintenance cost in
comparison to previous greedy heuristics.
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