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Abstract—Federated learning (FL) is a widely-used collaborative
learning approach where clients train models locally without
sharing their data with servers. However, privacy concerns remain
since clients still upload locally trained models, which could
reveal sensitive information. Fully homomorphic encryption (FHE)
addresses this issue by enabling clients to share encrypted models
and the server to aggregate them without decryption. While
FHE resolves the privacy concerns, the encrypted data introduces
larger communication and computational complexity. Moreover,
ciphertexts are vulnerable to channel noise, where a single bit error
can disrupt model convergence. To overcome these limitations,
we introduce Rhychee-FL, the first lightweight and noise-resilient
FHE-enabled FL framework based on Hyperdimensional Comput-
ing (HDC), a low-overhead training method. Rhychee-FL leverages
HDC’s small model size and noise resilience to reduce communi-
cation overhead and enhance model robustness without sacrificing
accuracy or privacy. Additionally, we thoroughly investigate the
parameter space of Rhychee-FL and propose an optimized system
in terms of computation and communication costs. Finally, we
show that our global model can successfully converge without
being impacted by channel noise. Rhychee-FL achieves comparable
final accuracy to CNN, while reaching 90% accuracy in 6× fewer
rounds and with 2.2× greater communication efficiency. Our
framework shows at least 4.5× faster client side latency compared
to previous FHE-based FL works.

I. INTRODUCTION

Federated learning (FL) is a distributed learning approach
where multiple clients collaboratively train a model without
sharing their local data. FL has gained significant interest in
fields such as Internet of Things (IoT), finance, healthcare, and
smart cities [1]. In each global round, participants train their
models locally and share them with a central server, which then
aggregates the models to combine their knowledge. FL ensures
data privacy by keeping raw data on local devices.

However, FL does not address all privacy concerns. Sharing
local models with the server can still expose sensitive infor-
mation or lead to misuse [1]. Fully homomorphic encryption
(FHE), an encryption scheme that supports arbitrary computa-
tions over encrypted data, addresses this issue [2]. With FHE,
clients can encrypt their local models before sharing, enabling
the server to aggregate these models without decryption.

Although FHE ensures model privacy, it also introduces
several challenges. First, computations and communications
in FHE are significantly more expensive than in plaintext.
For instance, a single multiplication in the FHE domain can
take more than hundreds or thousands of operations, and

an 8-bit integer can turn into a ciphertext of around 1KB.
These overheads pose significant challenges for FL in resource-
limited applications. Additionally, inputs in FHE are typically
quantized into plaintext domains, which can degrade accuracy
dramatically. The ciphertext size, operation complexity, and
quantization precision depend on the chosen FHE parameter
and scheme, necessitating design space exploration to manage
these costs effectively. Finally, FHE-based FL is prone to
communication noise. Even a single bit error in a ciphertext can
result in completely incorrect decryption, which may propagate
through the system and lead to erroneous outcomes at both
the server and client levels. Although previous studies have
explored the use of homomorphic encryption in FL [3]–[5],
their methods are inefficient in terms of both computation and
communication overhead and do not address communication
noise.

We introduce Rhychee-FL, the first FHE-enabled FL frame-
work that excels in lightweight training, efficient communi-
cation and robustness to communication noises. Rhychee-FL
is designed based on hyperdimensional computing (HDC),
which is a lightweight computing paradigm with small model
sizes and simple learning procedures. HDC encodes raw data
into high-dimensional, low-precision vectors. On client de-
vices, local HDC learning is done through simple element-
wise addition, producing class-specific vectors as local models.
Rhychee-FL securely exchanges these encrypted class vectors
with the server, where they are homomorphically aggregated.
In Rhychee-FL, we systematically explore the design space
of the scheme selection and parameter settings in FHE to
reduce computational and communication overhead. Rhychee-
FL also mitigates the precision challenges associated with FHE
thanks to the noise resilience of HDC models. Finally, we
perform experiments involving communication channels and
error detection, making Rhychee-FL the first FL-FHE system
to be tested for robustness to communication noise. Our results
show that the global model converges before such errors can
affect performance, ensuring reliable FL outcomes.

The key contributions of the work are as follows:

• We propose an efficient and privacy-preserving federated
learning system using hyperdimensional computing and
fully homomorphic encryption.

• We explore the model and FHE design space to provide



insights on parameter selection aimed at optimizing both
computation and communication costs.

• We evaluate the impact of channel noise during transmis-
sion, ensuring the global model convergence.

• Adopting hyperdimensional computing, our framework
shows high communication efficiency, fast convergence,
and noise robustness. Through experiments, we reduced
the model size by 2.2× while reaching comparable final
accuracy to a CNN model.

• Compared to previous FHE-based FL frameworks, our
framework shows at least 4.5× faster client-side latency.

II. BACKGROUND

A. Fully Homomorphic Encryption

Fully homomorphic encryption (FHE) is an encryption tech-
nique that allows computations to be performed directly on
encrypted data. The computing party, typically a server, can
carry out operations without needing to decrypt the data. Since
the server never accesses the plaintext, FHE is one of the key
techniques for data privacy.

The most commonly used FHE schemes are classified into
two branches: SIMD style and single-value style. Both of them
are based on learning with error (LWE) problems. However,
they differ in data packing and supporting homomorphic oper-
ations. The SIMD style, including BGV [6] and CKKS [7], [8]
schemes, encrypts a vector of integer/ real values into a cipher-
text. They use RLWE ciphertexts in R2

Q, where RQ = R/QR,
R = Z[X]/(XN +1), N is ring dimension and Q is ciphertext
modulus. They support element-wise arithmetic operations like
addition and multiplication. The single-value style schemes,
FHEW [9] or TFHE [10], can encrypt a single modulus integer
as a ciphertext and use LWE ciphertexts in Zn+1

q , where n
is LWE dimension and q is ciphertext modulus. They support
simple addition and look-up-table (LUT) operation.

We next define a few key FHE operations to be used in our FL
framework. Note that the inputs x and y can be either vectors or
scalar values. If they are vectors, the operations are performed
element-wise.

• Enc(x) = c : Encryption of the input plaintext x.
• Dec(c) = y : Decryption of the plaintext c. The secret key

is needed to perform decryption.
• HomAdd(Enc(x),Enc(y))) = z : Homomorphic addition

of two ciphertexts. Conversely, Dec(z) = x+y+ ϵ, where
ϵ is an error value.

•
∑Hom

i ci = s : Homomorphic summation of input cipher-
texts ci. Same as evaluating s by repeating HomAdd(s, ci)
for ∀i.

• HomMul(Enc(x), a) = z : Homomorphic multiplication
with a plaintext value a. Conversely, Dec(z) = ax+ ϵ.

The substantial ciphertext size in FHE systems necessitates
high memory bandwidth, and their performance is constrained
by computationally intensive operations such as polynomial
multiplication. This throughput bottleneck poses a significant
obstacle to the scalability and broader adoption of FHE, in-
cluding its application in federated learning frameworks.

B. Hyperdimensional Computing
Hyperdimensional computing (HDC) is a lightweight comput-
ing framework that uses high-dimensional holographic repre-
sentations of data, called hypervectors. We adopt the random
projection [11] and RBF [12] encoding in our work due to its
state-of-the-art performance in classification tasks. Suppose D
represents the dimension of hypervectors.

Random Projection Encoding Given input feature vector
of size f , F ∈ Rf , we sample base Bi ∈ Rf from {−1, 1}.
Each element of the encoded hypervector H = (h1, h2, . . . hD)
is computed as hi = sign(Bi · F ).

RBF Encoding Given input feature vector of size f , F ∈ Rf ,
we sample base Bi ∈ Rf from Gaussian distribution N (0, 1).
We use uniformly random bias bi ∈ [0, 2π] for i = {1, 2, . . . D}.
Each element of the encoded hypervector H = (h1, h2, . . . hD)
is calculated as hi = cos(Bi · F + bi).

HDC Training Once the dataset is mapped to hypervectors,
we perform HDC training, which involves similarity evalua-
tion and vector addition. Let σ(X,Y ) ∈ [0, 1] represent the
similarity metric used to measure the distance between two
hypervectors, X and Y . We train the model by updating the
class hypervectors Cl for l ∈ {1, 2, . . . L}, where L is the
number of input classes. Assuming c is the class of H , and
p is another class whose hypervector is closest to H , we
define p = argminl(σ(Cl, H)). The model training proceeds
as follows with a learning rate lr:

Cc ← Cc + lr · (1− σ(Cc, H)) ·H
Cp ← Cp − lr · (1− σ(Cp, H)) ·H

(1)

HDC Inference HDC classification inference uses the same
similarity metric as in the training stage. For a given input
query hypervector H , we evaluate its distance to each class
hypervector and assign the label of the closest one: p =
argminl(σ(Cl, H)). We use cosine similarity for σ to measure
the closeness between hypervectors.

III. RELATED WORK

A. FHE and Federated Learning
PFMLP [3] proposed an FL framework with HE, using multi-
layer perceptron (MLP) model and the Paillier encryption
scheme [13]. Their method reduced latency by 13.3% compared
to a standard MLP and by up to 28% after optimizing the Pail-
lier system. However, since Paillier is an additive homomorphic
scheme, it only supports basic operations, limiting PFMLP to
a simple addition-based aggregation strategy.

tMK-CKKS [5] introduced a privacy-preserving FL frame-
work based on a multi-key variant of the CKKS scheme. By
leveraging CKKS’s batching technique, the framework reduced
computation latency and communication size compared to prior
FL frameworks built on CKKS and Paillier cryptosystems.
However, despite the improvements, the framework shows rel-
atively low accuracy, including 81.87% on the MNIST dataset.
This implies that decreasing the model complexsity to improve
the communication efficiency could result in significant accu-
racy degradation.

In constrast, Rhychee-FL leverages HDC for lightweight
training and computation. We thoroughly evaluate Rhychee-
FL’s design space, examining various parameters such as HDC



dimensions and FHE cryptographic settings to balance accuracy,
communication size, and computational latency.
B. Hyperdimensional Computing and Federated Learning
Previous works have shown that the lightweight operations and
model of HDC can improve both computational and communi-
cation efficiency in FL.

FedHD [14] and FHDnn [15], [16] represent the early efforts
for applying HDC in FL. Unlike conventional FL methods
that transmit CNN models, FedHD and FHDnn exchange class
hypervectors between clients and the server, resulting in smaller
model sizes and greater tolerance to communication noise.
Their results demonstrated comparable accuracy with up to
66× improvement in communication efficiency and 3× faster
convergence compared to DNNs. However, the framework still
suffers from the privacy concerns related to model sharing. In
this work, we address privacy concerns by employing FHE,
with further parameter optimization to reduce overhead.

IV. METHODOLOGY
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Fig. 1: Overview of Aggregation Round
In this paper, we propose Rhychee-FL, a novel privacy-

preserving federated learning framework based on HDC.
Rhychee-FL enhances the computational and communication
efficiency by utilizing lightweight HDC learning, without com-
promising accuracy and privacy. In Section IV-A, we introduce
the overall procedure of Rhychee-FL. In Section IV-B we
explain the design space of the framework, that we explore to
further optimize it. Finally, Section IV-C shows the analytical
model that we used to evaluate the communication channels in
our FL setting.
A. Overview of Rhychee-FL
Before the learning process begins, a key sharing process is
performed. In this step, the clients decide on an FHE parameter
set and share a common secret key. The secret key is not
shared with the server, preventing the server from accessing
their raw models and guaranteeing model privacy. The clients
also provide the server with a set of public keys, which are used
for homomorphic operations.

Fig. 1 illustrates one global round of FL in Rhychee-FL,
including local training, local model collection, homomorphic
aggregation and global model distribution.

1 Local Training In the t-th round of model aggregation,
each i-th client trains their local models LMt

i using their local
datasets for a few epochs. In our framework, the local model

training is done by updating the class hypervectors as defined
in Eq. (1).

One of the key advantages of HDC is that the model training
process is simpler compared to DNN and gradient descents. As
shown above, the training only requires similarity computations
and vector additions. This can reduce the local training time,
as well as the total training time.

2 Local Model Collection Subsequently, each of the
clients encrypts their local model (Enc(LMt

i)) and sends it to
the server. While encrypting the models with a packed FHE
scheme like CKKS, we maximize the efficiency of the packing
method. To elaborate more, encrypting each hypervector as one
ciphertext would be a simple and straightforward approach.
However, a ciphertext can often encrypt larger vectors than
a single hypervector. This simple approach would waste the
capacity of ciphertexts. To avoid this, we ensure that every slot
of the ciphertext is fully utilized. More detailed explanation
about the ciphertext size is provided in Section IV-B2.

3 Homomorphic Aggregation Once the server receives
local models, it homomorphically evaluates their average
HomAvgi(Enc(LMt

i)). The homomorphic averaging function is
defined as follows, where P is the number of clients:

HomAvgi(Enc(LMt
i)) = HomMul(

Hom∑
i

Enc(LMt
i), 1/P ) (2)

The HomAvg(·) function can be directly applied even when
utilizing maximum packing, as the homomorphic operations are
performed element-wise.

In this work, we adopted FedAvg [17] which is the most
fundamental and widely-adpoted aggregation method in FL.
Notably, Rhychee-FL can be easily expanded to use other
aggregation strategies such as FedNova [18] and FedProx [19],
which we leave for future investigation.

4 Global Model Distribution The homomorphic aggrega-
tion results in the encryption of the global model Enc(GMt+1)
for the (t+1)-th round. Finally, this global model is sent back to
the clients, who decrypt it. They then update their local models
with the new global model: LMt+1

i ← GMt+1.
Because the clients receive the global models directly and

not the average of gradient descents, they can directly use the
model without further computations.
B. Design Space Exploration
We further define and optimize the design space of Rhychee-
FL. This parameter selection is crucial because it significantly
impacts both performance and overhead. For instance, in the
HDC domain, smaller models help reduce communication and
computation overhead, but the model must still be large enough
to maintain reasonable accuracy. Similarly, in the FHE domain,
the choice of encryption scheme and cryptographic parameters
determines ciphertext size and computational complexity. Thus,
selecting an optimized set of parameters is crucial for optimiz-
ing the framework.

In the following sections, we describe the tunable parameters
in both the HDC and FHE domains.
1) HDC Design Space
In HDC classification, class hypervectors represent the model.
Assuming we have a hypervector of dimension D and a dataset



with L classes, the model consists of a total of D×L trainable
variables, which are sent to the server for aggregation. There-
fore, minimizing D is a key optimization to reduce model size.
However, as previous studies like ManiHD [12] have shown,
smaller D can lead to accuracy degradation, so this parameter
must be carefully selected through evaluations.
2) FHE Design Space
In FHE-based FL, clients share ciphertexts with the server, so
reducing the size or number of ciphertexts directly affects com-
munication overhead. The size of a ciphertext is determined by
the choosen FHE scheme and their parameters. It is important
to note that the number of ciphertexts may not be the same
as the number of model variables, depending on the selected
FHE scheme. For example, CKKS [7], [8], [20] is a SIMD-style
scheme that uses Ring-LWE (RLWE) ciphertexts, allowing it to
encrypt up to N/2 numbers into a single ciphertext. Therefore,
the number of ciphertexts is ⌈ DL

N/2⌉.
On the other hand, FHEW and TFHE [9], [10] are single-

valued schemes using LWE ciphertexts. Unlike CKKS, these
schemes can encrypt only one value at a time, resulting in
a total of D×L ciphertexts. Table I summarizes the commu-
nication size per round based on the model parameter D,L
and cryptographic parameters N,Q, n, q. This evaluation can
be generalized to other models by replacing the D×L term
with the total number of trainable parameters in those models.

Scheme Communication Size (bits)

CKKS ⌈ DL
N/2

⌉2N logQ

TFHE DL(n+ 1) log q

TABLE I: Design Space and Communication Size

Scheme selection between CKKS and TFHE should be made
considering their trade-offs. CKKS supports SIMD-style oper-
ation and has smaller amortized latency, making this scheme
more suitable for processing numerous data at once. However,
it only supports arithmetic operations – multiplication and
addition. Therefore, evaluating a non-linear function would
require polynomial approximations, which can lead to multiple
expensive CKKS bootstrappings. On the other side, TFHE
scheme only encrypts a single value, resulting in a total number
of ciphertexts that can be very large depending on the applica-
tion. But TFHE is known to support an arbitrary LUT without
loosing integer precision. Therefore, TFHE is more suitable for
high-precision computation requiring non-linear functions.
C. Analytical Models for Noisy Communication Channels
Although FHE guarantees privacy in FL setting, ciphertexts can
get compromised during data transmission. Even a single-bit
error can cause the ciphertext to decrypt to an entirely incorrect
value and not allowing the global model to converge. Therefore,
stricter error detection and correction methods are necessary to
ensure accurate computations. We establish analytical models
to evaluate such effects and calculate the expected number of
FL rounds until failure. From these models, we reveal that
Rhychee-FL is more resilient to communication noise due to its
smaller model size. This is the first time that communication
errors are considered jointly with FHE.

To evaluate communication latency, we use a model where
a transmitter sends 1400-bit TCP/IP packets to a receiver over
a 3GPP Urban Microcell (UMi) channel. The system follows
the 5G standard with 14 symbols and 12 subcarriers per
physical resource block (PRB), using 16-quadrature amplitude
modulation (QAM-16) for 4 bits per symbol. It employs 16
receiver antennas, 4 transmission antennas, and a signal-to-
noise ratio (SNR) of 12 decibels (dB), based on established
benchmarks [21].

For the receiver, error detection algorithms like Checksum
and CRC are used to detect bit errors and initiate packet retrans-
mission if necessary. Checksum, which sums up data blocks to
verify errors, is simple but less robust [22]. On the other hand,
CRC is more robust and effectively detects common errors
through polynomial division of data, making it well-suited for
high-reliability applications in networking and communications.
The corresponding communication latency is shown in Eqn. 3,
computed from the latency for transmitting a single TCP packet
LTCP Packet, error detection LCRC/Checksum, and the number
of packet retransmissions Nre.

Lcomm = (LTCPPacket + LCRC/Checksum)×Nre (3)
We assume that Pre is a probability for an undetected error

to occur in CRC or checksum. The probability of at least one
bit error in a packet is given by N × BER, where N is the
number of bits in the packet and BER is the bit error rate.
Consequently, the overall probability of an undetected error is
expressed as Pue = N ×BER× Pre.

The Poisson distribution can be used to model the number
of transmissions until an undetected error occurs. The expected
number of transmissions E[T ] is the inverse of the probability
of an undetected error, 1

Pue
.

In a federated learning setup with P clients and 1 server, the
total number of data packet transmissions per round includes
both client-to-server and server-to-client packets. The expected
number of rounds until failure, E[R], is the maximum number
of aggregation rounds before an undetected error occurs. This is
approximated by dividing the expected number of transmissions
until failure by the total number of transmissions per round. For
a P -client system, this is E[R] = E[T ]

2×P×(# Packets Communicated) .
Given the expected number of transmissions to failure E[T ] and
considering the two-way communication between the server and
the clients in each round, this formula provides an estimate of
how many federated learning rounds can be completed without
errors.

V. RESULTS

A. Experimental Setup
We run our algorithm on a CPU environment with Apple M1
Pro and 16GB RAM using the MNIST [23] and human activity
recognition (HAR) datasets [24]. We tested the framework with
varying number of clients from 10 to 100. The dataset was
distributed in non-iid manner, using Dirichlet distribution as in
Li et al. [25]. We used random projection encoding for HAR
dataset and RBF encdoing for MNIST dataset. We used one
of the state-of-the-art federated learning frameworks by Li et
al. [25] with FedAvg [17] to measure the baseline performance.
We used their CNN model with two convolutional layers and



PFMLP [3] xMK-CKKS [5] Ours
Model MLP LR HDC

HE Scheme Partial HE (Paillier) tMK-CKKS CKKS
Parameters 54, 912 7, 850 20, 000
Accuracy 0.925 0.819 0.960

Enc/Dec Latency 779.37 s 389.2 ms 86 ms

TABLE II: Comparison of Previous Works and Ours (MNIST)
two fully connected layers as our baseline model, because it
provides one of the best accuracy results with smaller network
for the MNIST dataset. We also compared our framework
with previous works on FL with homomorphic encryption,
PFMLP [3] and xMK-CKKS [5].
B. Performance Comparison with SOTA
We first compare our framework’s performance with state-of-
the-art FL-FHE frameworks, PFMLP [3] and xMK-CKKS [5],
based on MNIST workload. Although the experimental setups
differ in the number of clients, it is reasonable to compare
key results that are commonly applicable regardless of the
client count. In Table II, we compare the number of trainable
parameters, final global accuracy and encryption and decryption
latency per iteration for each client. In all these aspects our
framework outperformed PFMLP [3] and xMK-CKKS [5]. For
example, our final global model shows 3.5% and 14.1% higher
accuracy, while encryption and decryption is 9, 000× and 4.5×
faster each. It is also worth noting that when the baseline models
increase their size to achieve comparable accuracy to ours, their
latency also increases due to the larger number of parameters.
C. System Parameters and Accuracy
We comprehensively evaluate the impact of system parameters
on accuracy. These system parameters encompass both model
parameters and federated learning parameters.
1) Model Parameter and Accuracy

20
00

40
00

60
00

80
00

10
00

0

D

10
25
50
75

100

# 
Pa

rti
es

0.96 0.959 0.967 0.963 0.954

0.952 0.957 0.957 0.959 0.951

0.96 0.965 0.963 0.963 0.955

0.962 0.96 0.961 0.962 0.962

0.958 0.962 0.963 0.961 0.961
0.940
0.945
0.950
0.955
0.960
0.965
0.970

(a) MNIST

20
00

40
00

60
00

80
00

10
00

0

D

10
25
50
75

100

# 
Pa

rti
es

0.919 0.924 0.944 0.931 0.937

0.942 0.939 0.939 0.938 0.943

0.925 0.925 0.938 0.947 0.943

0.929 0.936 0.936 0.936 0.943

0.924 0.925 0.939 0.942 0.936
0.90

0.92

0.94

0.96

0.98

1.00

(b) HAR
Fig. 2: Final Global Model Accuracy

The HDC model typically utilizes a hypervector dimension
D in the range of 1, 000 to 10, 000. For certain datasets, a
larger dimension is necessary to achieve good accuracy. Fig. 2
illustrates our HDC global model’s accuracy as a function of
D and the number of clients for HAR and MNIST datasets,
respectively. These experiments are conducted in non-encrypted
data. For all values of D, our global model reached ≥ 95%
accuracy for MNIST and ≥ 92% for HAR. The fact that there
is no significant accuracy difference for different D indicates
that these datasets do not require large dimension to achieve
satisfactory accuracy. In other words, hypervectors of size D ≤
4, 000 is enough to represent the meaningful features of the
datasets. Therefore, we can avoid using large dimension and
enhance the communication efficiency.

Set Scheme N(n) logQ(log q)

CKKS-1

CKKS

32768 160
CKKS-2 16384 130
CKKS-3 8192 100
CKKS-4 8192 61
TFHE-1

TFHE
534 10

TFHE-2 503 10
TFHE-3 448 10

TABLE III: FHE Parameter Sets

2) Federated Learning Parameter and Accuracy
From Fig. 2, we gain insights about the relationship between the
number of parties, which is a key federated learning parameter,
and the resulting global model accuracy. For every case of
our experiment, the global model showed a similar rate of
convergence and final accuracy. This consistency suggests that
our framework can maintain stable performance across varying
client numbers. We credit such stability to HDC’s robustness to
noises and less sensitivity to parameter settings.
3) Fast Convergence
Fig. 3 compares the global model’s accuracy by aggregation
rounds with CNN baseline [25]. Our framework used D =
2, 000. We have marked in the graph when the accuracy first
reaches 90%. In all cases, our HDC model was able to reach
90% accuracy within 5 rounds of communication, which is
much faster than the CNN model. For example, with 100 clients,
our model reached the target accuracy 6× faster than when
using CNN [25]. This highlights the fast convergence of HDC-
based models in Rhychee-FL, suggesting its effectiveness in
real-world federated learning with many clients.
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D. FHE Settings and Communication Efficiency
We conduct a series of experiments to evaluate the impact of
FHE schemes and parameter selection on communication size.
We utilized the CKKS and FHEW implementations from the
OpenFHE library [26]. To thoroughly evaluate communication
efficiency, we selected seven distinct sets of FHE parameters:
four from the CKKS scheme and three from the FHEW scheme.
Table III details these parameters, all of which meet the 128-bit
security standard. N is ring dimension, n is LWE dimension,
Q and q are ciphertext modulus.

Fig. 4 illustrates the communication overhead for various
FHE parameter sets, in relation to the model size. The overhead
is evaluated following the Table III and the model defined as
the number of trainable parameters in the model. We assumed
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maximum utilization of CKKS packing. The figure shows our
HDC model with D = 2, 000 and the CNN model [25], both
trained on the MNIST dataset. The results indicate that our
HDC model offers communication advantage over the baseline
CNN. Our model shows at most 2.2× smaller communication
size than the CNN [25], using CKKS-4 parameter set. The
communication size in the framework is primarily determined
by the number of ciphertexts to be transmitted, which in turn
is dictated by the number of trainable parameters in the model.
Thus, models with fewer parameters, such as the HDC, can
significantly reduce communication size.

Furthermore, our observations highlight the significance of
the FHE scheme and parameter selection. For example, using
parameter set CKKS-4 instead of TFHE-1, our framework
can achieve up to 21.4× improvement in communication size.
Shown in parameter sets CKKS-3 and CKKS-4, we evaluated
the impact of ciphertext modulus by reducing the scaling
factor parameter in FHE. The scaling factor parameter primarily
determines the precision of the plaintext preserved in our
application, which does not involve any FHE bootstrapping.
We tested lowering the ciphertext modulus Q as low as 61 bits
does not degrade the global model accuracy. In the meantime,
this exploration brought us to further reduce the communication
size by 39%.

The results indicate that the CKKS scheme consistently
achieves a significantly smaller communication size compared
to the TFHE scheme. This advantage stems from CKKS’s
ability to efficiently pack multiple parameters into a single
ciphertext, reducing the average ciphertext size per model
parameter. However, the ciphertext size remains fixed, even
when the number of parameters is less than the maximum
capacity of a single ciphertext. As a result, the TFHE scheme
shows advantages when the number of parameters is smaller,
as illustrated in Fig. 4b. Additionally, TFHE supports non-
linear LUT operations without losing input precision, making
it ideal for systems where high-precision non-linear operations
are prioritized over communication overhead.
E. Robustness to Communication Noise
We use the communication channel setup described in Sec-
tion IV-C with 32-bit CRC and 10 clients and 1 server setting
to evaluate the net transmission latency as well as the time until
the first error occurs for our FL-FHE framework. We set a BER
of 10−3 and a packet size of 1400 bits (typical to standard 5G
protocol). With this setting, Pre = 1

232 = 2.328 × 10−10 and
E[T ] = 3.039× 109.

In Fig. 5a, we plot the communication latency for each round,
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Fig. 5: Communication Overhead with CRC Error Detection
and Retransmissions (MNIST)

based on Eqn. 3, with CRC error detection and retransmissions.
Our method with D = 2, 000 has 54% lower latency compared
to CNN baseline when using CKKS-4. In Fig. 5b and Fig. 5c,
we plot the expected number of aggregation rounds and the
total time until failure for the 10 client - 1 server FL scenario
based on the calculations shown in Section IV-C. Compared to
CNN, our HDC (D = 2, 000) takes 2.2x more transmissions
and time (37 days for HDC vs. 17 days for CNN) to run
into an error with CKKS-4, thanks to the small model size
of HDC. Moreover, given the fast convergence of the HDC
model, as shown in Section V-C3, we can conclude that our
global model can successfully converge before channel noise
causes any interruptions.

VI. CONCLUSION

Federated learning (FL) enables multiple clients to collabora-
tively train models, but it raises privacy concerns. We propose
a privacy-preserving FL framework that leverages fully homo-
morphic encryption (FHE), allowing computations on encrypted
data to protect client models. However, FHE introduces signif-
icant memory and computation overhead.

To address this challenge, we adopted a lightweight, noise-
resilient hyperdimensional computing (HDC) model, known
for its efficiency and robustness. Furthermore, we explored
various design choices, including model and FHE parameters, to
optimize the framework. Lastly, we present an analytical model
of the communication channel to assess the impact of channel
noise on our framework.

Our results show that the communication overhead is reduced
by up to 2.2× using HDC when compared against a CNN
model. Compared to previous FHE-FL frameworks, ours show
over 4.5× faster client side operation. We also demonstrated
that with a careful FHE parameter selection, we can improve the
communication efficiency by 21.4×. Finally, our communica-
tion simulation demonstrated that our framework can converge
before channel noise causes any significant error.
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