UC San Diego

JACOBS SCHOOL OF ENGINEERING Computer Science and Engineering

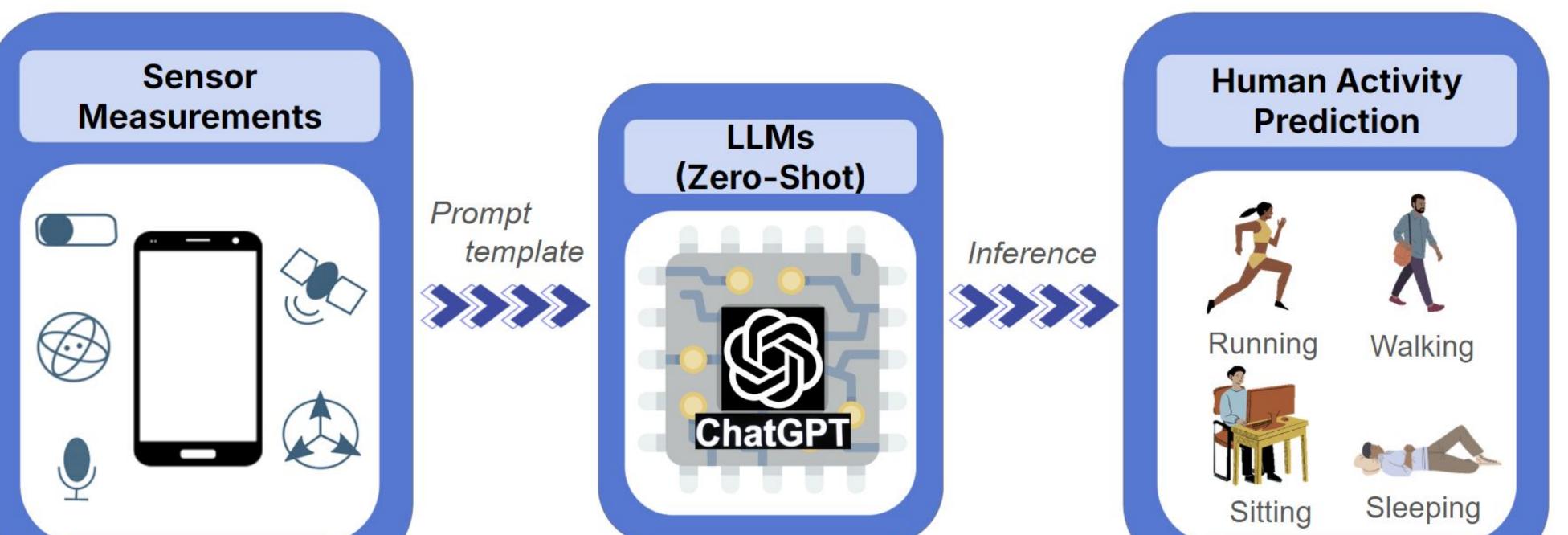
Human Activity Data Collection, Analysis and LLM-based Zero-Shot Reasoning

Presenters: Audrick Bolaños Linares, Cesar Daniel Ortiz Aguilera Xiaofan Yu¹, Tajana Rosing¹, Moshiri Niema¹, Diego Muñiz De las Casas, and Marena Isabel Schiess

BACKGROUND & MOTIVATION

Automatic recognition of Human Activity (HA) using Internet-of-Things (IoT) devices has become crucial to health monitoring, aging care, and human behavior analysis.

- large datasets, long training time, and extensive resources.
- The proposed project presents an alternative way of using LLMs based on:
- Zero-shot reasoning to analyze raw IMU data and predict HA without training
- Chain-of-thought prompt design



RELATED WORKS

Convolutional neural network model

MultiCNN-FilterLSTM [1], and LSTM-CNN [2]

Limitations: Complex multi-head CNN-based architectures, and expensive training.

- WISDM dataset: 1,098,207 samples of physical activities (6 activities), 972 minutes sampled at 20 Hz
- Have high time complexity and the multi-head attention layer results in many parameters

Large language model

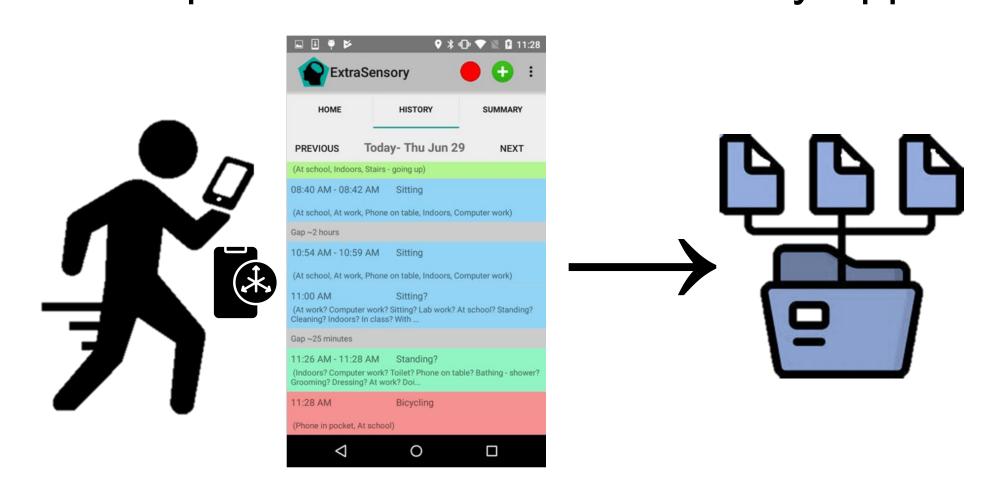
ChatGPT 4-based HAR [3]

Limitations: Limited activity collection (4 attributes), prompt length restriction, and low F1-score.

METHODS

(1) Sensor data collection:

Android phone with the ExtraSensory App.



- → Data collected: Continuous sensor logs and manual reporting of activities by users for daily activities monitoring
 - → Phone IMU (sensors used):
 - Magnetometer (Magnet)
 - Accelerometer (Acc)
 - Gyroscope (Gyro) Microphones (Audio)

(2) Label analysis dataset:

At home -	I II	1.11	
Strolling -	1 11		I.
Indoors -	H 1	11	
Walking - 111	пш		1
Phone on table -	1 111	0.11	
Phone in pocket 🔁 🛚	Ш		111
At school -	11 111		- 10
Computer work 🚪 🕛	H 111	11	
Sitting 📲 📲	1 111 111	1.11	1.1
(Collected data)	II II II II II	1.11	m
	Г		4
Mon	Tue	Wed	

11:39AM

→ Visualization: Graph the label reported by users to visualize activities over time and identify the main activities:

11:39AM

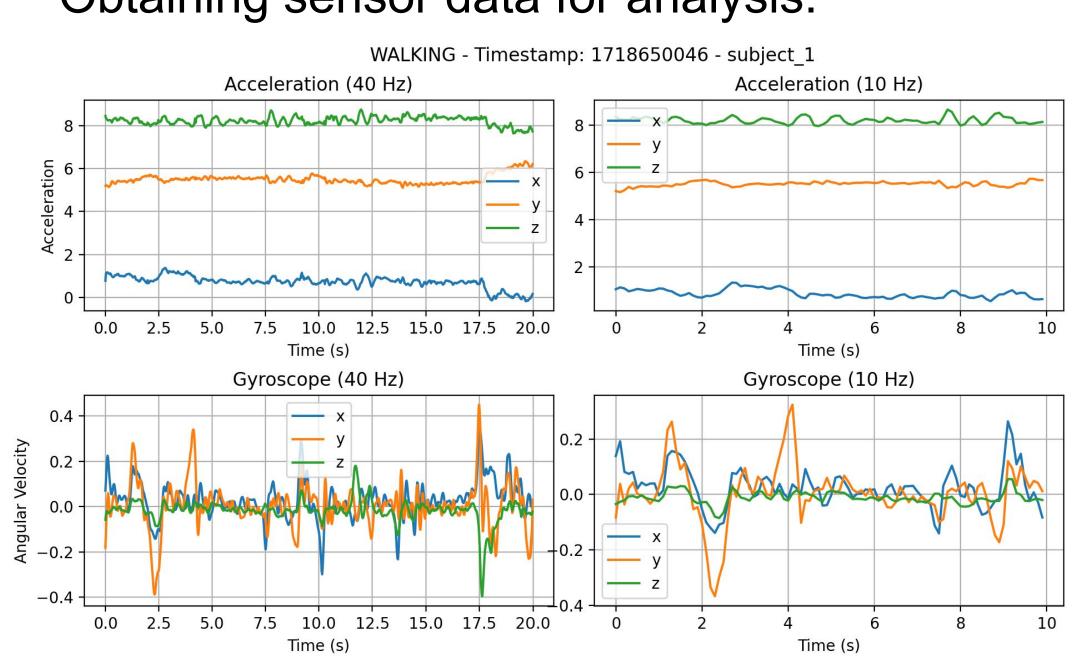
"Walking" (W) "Sitting" (S) 'Lying down" (LD) "Standing" (ST)

11:39AM

→ Pattern Identification: Identify patterns and correlations in sensory data associated with different activities

(3) Data extraction & pre-processing:

Obtaining sensor data for analysis.



- → Normalization: Adjust the raw data to have a uniform scale
- → Segmentation: Divide the data into time windows consistent with the reported activities
- → Analytical analysis: Compute the mean, standard deviation, and accuracy for raw IMU data

Data collection

(4) Prompt generation for GPT:

Prompt input

###Instruction: You are an expert in IMU-based human activity analysis. ###Question: The IMU data is collected from sensors attached to the user's phone with a sampling rate of {Hz_reduced} Hz. The IMU data is given in the IMU coordinate frame. The three-axis accelerations and gyroscopes are given below. Accelerations: Gyroscope: x-axis: {...}, y-axis: {...}, z-axis: {...} x-axis: {...}, y-axis: {...}, z-axis: {...} **** Magnetometer/ Audio MFCC Statistics:

Three-axis / Channel # : mean = {...}, std = {...}, var = {...} The person's action belongs to one of the following categories: "Lying down", "Sitting", "Standing", "Walking". Could you please analyze and determine the person's action based on the given IMU readings? Please make an detailed analysis step by step and give me only the action. ### Response: {answer}

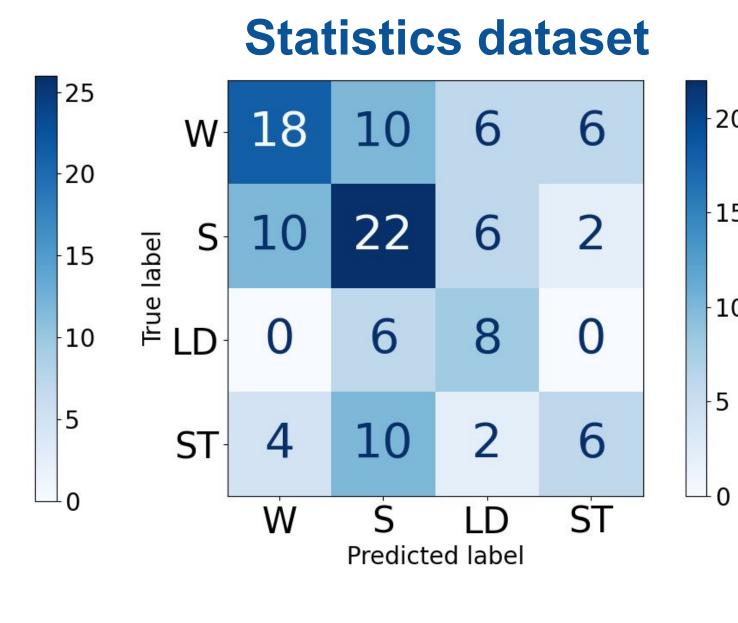
- different → Individual Prompts: Design prompts for GPT, incorporating Acc, Gyro, Magnet, and Audio values selectively
- → Activity Prediction: Use of ChatGPT-3.5 turbo to predict activities based on raw HA data from all users

RESULTS

	Combination of sensors	Precision	Recall	F1	Accuracy
Raw	Acc	0.400	0.842	0.542	0.495
	Acc and Gyro	0.465	0.976	0.630	0.548
	Acc and Magnet	0.486	0.857	0.621	0.532
	Acc and Audio	0.351	0.929	0.510	0.468
	Acc, Gyro and Magnet	0.544	0.804	0.649	0.565
	Acc, Gyro and Audio	0.360	0.939	0.521	0.452
	Acc, Magnet and Audio	0.337	0.806	0.475	0.385
	Acc, Gyro, Magnet and Audio	0.365	0.795	0.500	0.392
Statistics	Acc	0.302	0.839	0.444	0.375
	Acc and Gyro	0.561	0.871	0.667	0.569
	Acc, Gyro and Magnet	0.588	0.857	0.696	0.588
	Acc, Gyro and Audio	0.487	0.800	0.522	0.470
	Acc, Gyro, Magnet and Audio	0.385	0.786	0.485	0.446

Raw dataset 26

Predicted label



Experimental Setup

- 116 minutes of data collected in-the-wild (down-sample at 10 Hz)
- 5 users: 4 main activity-labels
- Metric: F1-score and accuracy

Key takeaways

- Statistical features reduce input size for GPT and increase accuracy
- Including Gyro Magnet and sensor features significantly enhance the accuracy

CONCLUSIONS

- chain-of-thought Zero-shot reasoning and decrease dependency prompts large datasets and extensive training times and reduce resource requirements
- Statistical features improve prediction accuracy and reduce computational cost

Activity prediction 水。水

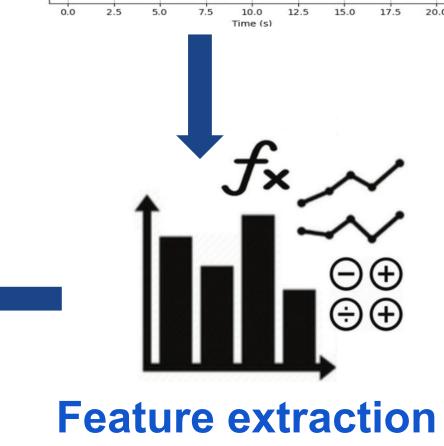
the person is most likely "Walking

CSV

×==

Workflow of HA prediction

Data preprocessing



FUTURE WORKS

- Use other LLMs to compare prediction accuracy with previous analyses
- assistant that takes Design virtual advantage of this information to provide recommendations personalized about people's lifestyles and implement with other wearable technology

REFERENCES

[1] Park, H., Kim, N., Lee, G. H., & Choi, J. K. (2023). MultiCNN-FilterLSTM: Resource-efficient sensor-based human activity recognition in IoT applications. Future Generation Computer Systems, 139, 196-209.

[2] Xia, Kun, Jianguang Huang, and Hanyu Wang (2020). LSTM-CNN architecture for human activity recognition. IEEE Access.

[3] Ji, S., Zheng, X., & Wu, C. (2024). HARGPT: Are LLMs Zero-Shot Human Activity Recognizers?. arXiv preprint arXiv:2403.02727.