
Hyperdimensional Computing on IoT Devices
Quanling Zhao, Kai Lee, Jeffrey Liu, Muhammad Huzaifa

Advisors: Xiaofan Yu, Tajana Rosing

• Federated Learning is a distributed machine learning paradigm that is 
most used where data is distributed across many devices such as cell 
phones, or multiple computer networks.

• Current federated learning paradigms are bulky and costly, so it is difficult 
to implement such systems onto low power devices that have limited 
resources and power.

• One avenue to reducing the cost of FL is Hyperdimensional computing 
(HDC), a lightweight and resource efficient paradigm.

• HDC encodes data into high dimensional vectors called hypervectors. 
Training is performed by comparing query vectors with class vectors.

• Datasets are encoded to class hypervectors.

• Query images are encoded and categorized to the most similar class 
hypervector in one-pass training.

BACKGROUND & MOTIVATION
We measured the accuracy, power consumption, and model performance 
under different level of communication noisy (Gaussian Noise). In addition, we 
also measure the average communication size and time-to-converge for each 
model.
- For HDC, we used 1 local epoch whereas CNN used 10 local epoch.
- For both HDC and CNN, we used 6 client, 20 communication rounds

and 500 local sample per client.
Accuracy of HDC vs CNN Measured Over Time

Energy Usage and Time of HDC vs CNN

*Time: total time used for accuracy to converge.

Average Model Size for CIFAR10

Analysis
FL with HDC provide:

- Better Accuracy compares to Baseline on complex image dataset
- 6 times less communication cost
- Robustness in noisy communication channels

We aim to improve federated learning systems with the addition of HDC in 
place of a neural network such that these systems may perform better on low 
power devices. We will evaluate our work in terms of accuracy, 
communication cost and energy efficiency, and robustness against noisy 
communication channels.

PROBLEM STATEMENT

We used FedML, which is an existing Federated Learning framework, in a real 
deployment of Raspberry Pi’s. We then modified FedML to have edge devices 
locally train hypervectors and send them to the server for aggregation after 

completing training.

The new system was deployed on a network of 6 total Raspberry Pi 4 and 
Raspberry Pi 400 clients and 1 Raspberry Pi 4 server for testing and 

evaluation.

RESULTS AND EVALUATION

ACKNOWLEDGEMENTS
We would like to thank Christine Alvarado and Mai Elshereif, for providing the opportunity 
for us to participate in the Early Research Scholars Program.
We would also like to thank Xiaofan Yu and Tajana Rosing, for their guidance and 
mentorship throughout the course of this project.
We would also like to thank Rishikanth Chandrasekaran and Kazim Ergun, for sharing their 
research and making the deployment of the code to be possible.

Figure courtesy of UCSD SEElab

Local data from the edge devices 
are used to generate local 

models.

These models are then sent to 
the global server.

The server aggregates the 
models to generate the global 

model.

Animal Classification with HDC

Federated Learning System with HDC

The server aggregates the 
models to generate the global 

model.

Local data from the edge devices 
are used to generate local 

models.

These models are then sent to 
the global server.

The server aggregates the 
models to generate the global 

model.

The server sends the 
global model to the 

clients. The current time is 
recorded.

The clients perform 
local training. During 
this process, the time 
and power usage of 
one of the clients is 

continuously 
recorded.

The clients send the updated 
local models back to the server. 

The time at which the server 
receives all models are 

recorded.

The server 
aggregates the local 
models to generate 
the global model. 

The accuracy of the 
model is recorded.

Baseline Training 
Time (s)

HD Training 
Time (s)

Baseline Energy 
Usage (J)

HD Energy 
Usage (J)

CIFAR10 7117 3175 42296 19164

Federated Learning with HDC Deployment

CNN 12.2 Megabyte HDC 1.9 Megabyte


