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I. Background
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⬛ Passive Auto-Focus 
▪ First and foremost step in cell detection 

▪ Two phases in passive auto-focus techniques:  
▪ focus measure functions 

▪ search algorithms

Background

Background Method Experiment Conclusion

End-to-end 
learning approach
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Figure 1: Mechanisms of passive auto-focus techniques.
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⬛ How to deal with auto-focus using vision input? 
▪ Vision-based model-free decision-making task  

▪ Deep Reinforcement Learning (DRL) is the solution! 

▪ Deep Q Network (DQN) can deal with high dimensional input

Background

Learning Agent Screw Action

Eyepiece’s View 
Pictures

Figure 2: Model of end-to-end vision-based auto-focus problem.

Background 

Figure 3: Atari 2600 games, which could be played by 
DRL-trained agent with vision input [1].

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing Atari with Deep Reinforcement Learning,” arXiv preprint arXiv:1312.5602, 2013.

Background Method Experiment Conclusion
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⬛ Our Contribution 
▪ Apply DRL to auto-focus problems, which does not utilize human knowledge 

▪ Demonstrate a general approach to vision-based control problems 

▪ Discrete state and action spaces 

▪ Reward function with an active terminal mechanism

Background

Background Method Experiment Conclusion
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II. Method
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⬛ System model 

▪ State ( ): three successive images ( ) and 
their corresponding actions ( )  

▪  

▪ Action ( ): one in the action set 

▪ Action set = {coarse positive, fine positive, terminal, 
fine negative, coarse negative} 

▪ Reward ( ) 

▪ DQN 

𝑠𝑡 𝑥𝑡
𝑎𝑡

𝑠𝑡 = {𝑥𝑡, 𝑎𝑡, 𝑥𝑡−1, 𝑎𝑡−1, 𝑥𝑡−2, 𝑎𝑡−2}

𝑎𝑡

𝑟𝑡

Method

Method

Figure 4: System model.
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⬛ Reward Function Design 
▪ Reward Function 

▪  

▪  : coefficient 
▪  and : current and max focus value 

▪  : termination bonus,  

𝑟𝑒𝑤𝑎𝑟𝑑 = 𝑐 ∙ (𝑐𝑢𝑟_𝑓𝑜𝑐𝑢𝑠 − 𝑚𝑎𝑥_𝑓𝑜𝑐𝑢𝑠) + 𝑡
𝑐
𝑐𝑢𝑟_𝑓𝑜𝑐𝑢𝑠 𝑚𝑎𝑥_𝑓𝑜𝑐𝑢𝑠

𝑡 𝑡 = {100,   𝑠𝑢𝑐𝑐𝑒𝑠𝑠
− 100,   𝑓𝑎𝑖𝑙𝑢𝑟𝑒

Method

Method
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⬛ DQN Design

Method

Method

Figure 5: The architecture of our DQN.

Background Method Experiment Conclusion
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III. Experiment
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⬛ Hardware Setup 
⬛ Training in Virtual Environment 
⬛ Training in Real Environment

Experiment

Experiment

Figure 6: Auto-focus system implementation

Background Method Experiment Conclusion
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⬛ Training in Virtual Environment 
▪ Save time in real training phase 

▪ Before training, perform equal-spacing 
sampling to construct a simulator

Experiment

Experiment

(a) Result of experiment 1

(b) Result of experiment 2

(c) Result of experiment 3
Figure 7: Result of virtual training phase.

Background Method Experiment Conclusion
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⬛ Training in Real Environment 
▪ Deploy the virtual-trained model to real scenarios 

▪ Apply real training phase and obtain a new model 

▪ Compare those two models by performing tests in 
real world

Experiment

Figure 8: Real world testing scene. Figure 9: The histogram of focus positions.

Background Method Experiment Conclusion
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⬛ Summary 
▪ In virtual training phase, our model shows great viability on larger range but need 

improvements on generalization capacity 

▪ In real training phase, our method is feasible to learn accurate policies (100% 
success rate) in real world but is susceptible to environmental factors

Experiment

Background Method Experiment Conclusion
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IV. Conclusion
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⬛ In this paper, we 
▪ use DQN to achieve end-to-end auto-focus 

▪ demonstrate that discretization in state and action spaces and active 
termination mechanism could be a general approach in vision-based control 
problems 

⬛ Next Step 
▪ Improve generalization capacity by training with larger dataset 

▪ Improve robustness towards environmental factors 

▪ Reduce training time 

▪ ……

Conclusion

Background Method Experiment Conclusion
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