
RelIoT : Reliability Simulator for IoT Networks

Kazim Ergun1, Xiaofan Yu1, Nitish Nagesh2, Ludmila Cherkasova3,
Pietro Mercati4, Raid Ayoub4, and Tajana Rosing1

1 University of California San Diego
{kergun,x1yu,tajana}@ucsd.edu
2 Technical University of Munich

nitish.nagesh@tum.de
3 Arm Research

lucy.cherkasova@arm.com
4 Intel Corporation

{pietro.mercati,raid.ayoub}@intel.com

Abstract. The next era of the Internet of Things (IoT) calls for a large-
scale deployment of edge devices to meet the growing demands of appli-
cations such as smart cities, smart grids, and environmental monitoring.
From low-power sensors to multi-core platforms, IoT devices are prone to
failures due to the reliability degradation of electronic circuits, batteries,
and other components. As the network of heterogeneous devices expands,
maintenance costs due to system failures become unmanageable, mak-
ing reliability a major concern. Prior work has shown the importance of
automated reliability management for meeting lifetime goals for individ-
ual devices. However, state-of-the-art network simulators do not provide
reliability modeling capabilities for IoT networks.
In this paper, we present an integrated reliability framework for IoT
networks based on the ns-3 simulator. The lack of such tools restrained
researchers from doing reliability-oriented analysis, exploration, and pre-
dictions early in the design cycle. Our contribution facilitates this, which
can lead to the design of new network reliability management strategies.
The proposed framework, besides reliability, incorporates three other in-
terrelated models - power, performance, and temperature - which are re-
quired to model reliability. We validate our framework on a mesh network
with ten heterogeneous devices, of three different types. We demonstrate
that the models accurately capture the power, temperature, and relia-
bility dynamics of real networks. We finally simulate and analyze two
examples of energy-optimized and reliability-optimized network configu-
rations to show how the framework offers an opportunity for researchers
to explore trade-offs between energy and reliability in IoT networks.

1 Introduction

The Internet of Things (IoT) is a growing network of heterogeneous devices,
combining residential, commercial, and industrial domains. Devices range from
low-power sensors with limited computational capabilities to multi-core plat-
forms on the high-end. From small scale (e.g., smart homes) to large scale (e.g.,
smart cities) applications, the IoT provides infrastructure and services for en-
hancing the quality of life and use of resources. By 2025, the IoT is expected to
connect 41 billion devices [14].

2 K. Ergun et al.

The unprecedented scale and heterogeneity of the IoT pose major research
challenges that have not been faced before. While ongoing research efforts aim
at optimizing power efficiency and performance [29, 30], an aspect that has of-
ten been neglected is the reliability of the devices in the network. The com-
mon property for these devices is that they age, degrade and eventually require
maintenance in the form of repair, component replacement, or complete device
replacement. Since an enormous number of heterogeneous devices are intercon-
nected in IoT networks, the maintenance costs will increase accordingly. Cisco
recently anticipated that for 100K devices that operate IoT smart homes, around
$6.7M/year will be spent for administration and technical diagnosis related to
system failures, comprising between 30% to 70% of total costs [7]. Without a
proper reliability management strategy, IoT solutions are strongly limited as it
becomes infeasible to maintain increasingly large networks.

Exploring reliability management strategies requires a convenient tool for
reliability evaluation. In respect of this, simulators are widely used tools in re-
search and industry to evaluate and validate networks, to study novel methods
without the need for real deployments when resources are limited. However,
existing network simulators do not support aging/degradation and reliability
modeling or analysis. Popular network simulators, e.g., ns-3 [6], OMNeT++ [5],
and OPNET [9] are equipped with a rich collection of communication models,
allowing the assessment of network performance (throughput, delay, utilization,
etc.) under different protocols. Recent research also integrated energy models
and an energy-harvesting framework to the platform [25, 27]. Yet it is not pos-
sible to analyze the reliability of IoT networks with the existing tools because
they lack built-in reliability models. It should be noted that we refer to the ag-
ing and reliability degradation of the hardware of an IoT device, and not to the
communication reliability.

To address this gap in reliability analysis, we propose a simulation framework
named RelIoT , which allows practical and large-scale reliability evaluation of IoT
networks. The framework is implemented in ns-3 [6], a discrete-event network
simulator with low computational overhead and low memory demands. Up to
one billion nodes can be simulated with ns-3 [19]. In recent years, with the
addition of models for various network settings and protocols through open-
source contributions, ns-3 has established itself as a de facto standard network
simulation tool. To allow reliability simulation in ns-3, RelIoT integrates the
following modules:

– Power Module: Supports power consumption simulation for various work-
loads with configurable power models.

– Performance Module: Works in cooperation with the power module to pro-
vide performance predictions for a given workload.

– Temperature Module: Estimates the internal temperature of a device based
on its power consumption.

– Reliability Module: Evaluates the device reliability using the existing thermal-
based degradation models [16,23,32].

To the best of our knowledge, RelIoT 5 is the first reliability analysis frame-
work for heterogeneous IoT networks, taking thermal characteristics as well

5 RelIoT is available at: https://github.com/UCSD-SEELab/RelIoT

RelIoT : Reliability Simulator for IoT Networks 3

as power and performance into account. RelIoT enables researchers to explore
trade-offs between power, performance, and reliability of network devices. More-
over, RelIoT incurs only a marginal performance overhead on the default ns-3,
making it scalable for simulating large networks. For the scalability analysis of
the default ns-3, the reader is referred to previous works [19,20]. We validate our
framework with two real-world experiments, showing RelIoT estimates power,
performance, and temperature with errors of less than 3.8%, 4.5%, and ±1.5°C
respectively. We validate reliability models against the results from existing lit-
erature. Finally, we built a mesh network testbed to illustrate that RelIoT can
effectively capture the average long-term power and thermal behavior of devices
in a dynamic network. Finally, we provide example simulation results from Re-
lIoT to motivate the need for reliability-aware management and to show the
differences between energy-driven and reliability-driven management strategies.

The rest of the paper is organized as follows: Section 2 reviews power, perfor-
mance, and reliability simulation techniques introduced by previous works. The
overall structure of our proposed framework and details of models is elaborated
in Section 3 and Section 4. Section 5 describes the evaluation setup and further
discusses the results. The paper concludes in Section 6.

2 Related Work

Network Simulators for Power and Performance. Network simulators are
used to study the behavior of computer networks and evaluate communication
protocols prior to deployment. Popular examples are: ns-3 [6], OMNeT++ [5],
and OPNET [9], all of which are discrete event-based and open-source. The
standard versions of these network simulators are designed only for analyzing
communication performance, lacking consideration for computation power, per-
formance, and reliability of network devices.

Motivated by energy constraints in battery-powered sensor networks, several
works have integrated power modeling and analysis with different granularity.
Wu et al. [27] first introduced energy source models and device energy mod-
els to ns-3. They used existing analytical battery models and relied on hard-
ware datasheets to build WiFi radio energy models. In another work named
PASES [18], the authors construct accurate power consumption models for both
processor and radio components of network devices by hardware design space
exploration. In network simulators, usually, the accuracy of power models is com-
promised for attaining low computational costs. To provide flexible options for
heterogeneous devices in an IoT network, RelIoT offers two configurable power
models with different granularity, while allowing extensions for user-specified
models.

For IoT performance, iFogSim [13] and EdgeCloudSim [22] incorporated com-
putation performance (e.g. processing delay) to simulate end-to-end latency of
a multi-level IoT structure including cloud servers, gateways, and sensors. Both
toolkits employ low accuracy estimations such as look-up tables for latency and
power analysis. RelIoT does a finer-grained estimation for different types of IoT
devices running various applications.

Reliability Modeling and Management. Prior work has studied reliabil-
ity degradation phenomena on processor-based systems. The considered failure

4 K. Ergun et al.

mechanisms include Time-Dependent Dielectric Breakdown (TDDB), Negative
Bias Temperature Instability (NBTI) and Electromigration (EM), which all limit
device lifetime [16,23,32]. In these works, the reliability degradation problem is
approached in two steps: (i) Physical-level models are built to quantify the relia-
bility degradation due to voltage and temperature stress, which are influenced by
the environmental conditions and workload variations. (ii) Based on the reliabil-
ity degradation models, a management algorithm is designed to optimize perfor-
mance while satisfying reliability constraints. The trade-off between performance
and reliability could be adjusted during runtime by voltage scaling [16, 23, 32],
task scheduling [10], or both [17]. The recent work by Mercati et al. [17] im-
plements the above-mentioned models on a mobile phone, showing as much as
a one-year improvement on lifetime with dynamic reliability management. De-
spite the impressive results on individual devices, reliability management for IoT
networks is yet to be investigated. Recently, a dynamic optimization approach
was proposed to manage battery reliability degradation in IoT networks, but
their work does not consider the reliability of other device components (e.g.,
processor) [12].

In this work, we propose RelIoT, a framework for end-to-end reliability sim-
ulation in IoT networks to enable investigation of reliability trade-offs and pro-
totyping of reliability management strategies. We develop and integrate power,
performance, temperature, and reliability modules into ns-3. In contrast to prior
work on network simulators, RelIoT offers temperature and reliability estimation
for the networked devices.

3 Reliability Framework for RelIoT

In this section, we give a background on ns-3 and its features, then describe the
overall structure of RelIoT and its integration with ns-3.

3.1 ns-3 Preliminary

ns-3 is built as a system of libraries that work together to simulate a computer
network. To do simulation using ns–3, the user writes a C++ program that links
the various elements from the library needed to describe the communication
network being simulated. ns–3 has a library of objects for all of the various
elements that comprise a network (objects are highlighted in italics). Nodes are a
representation of computing devices that connect to a network. Sensors, routers,
hubs, gateways, and servers in the IoT architecture can be all considered Node
objects. Fig. 1a shows the structure of a typical ns-3 Node. Net Devices represent
the physical device that connects a Node to a communications Channel. For
example, the Net Device can be a simple Ethernet network interface card or a
wireless IEEE 802.11 device, and the Channel could be a fiber–optic link or the
wireless spectrum. Packets are the fundamental unit of information exchange
in a network. A Packet contains headers describing the information needed by
the protocol implementation and a payload which represents the actual data
being communicated between network devices. Each protocol in the Protocol
Stack performs some operation on network packets and then passes them to
another layer in the stack for additional processing. The Net Applications are
simple networking applications that specify the attributes of communication

RelIoT : Reliability Simulator for IoT Networks 5

Power/Perf
Temp/Reliability

e

Protocol
Stack

PacketsPacketsPacketsPackets

Node
Channel

Routing

Comm Energy
CPU Energy

Contribution

Net Application

Net Device

Mobility

(a) ns-3 node structure

��−1

��
(Short Interval)

����
(Long Interval)

Power
Module

Temperature
Module

Performance
Module

Reliability
Module

�������� ��

Execution Time

Device Type, Application, Data Size, Frequency

R
el

ia
bi

lit
y

Fr
am

ew
or

k

(b) Proposed reliability framework

Energy Source
Models

WiFi Energy Model

Energy Harvester Model

Ideal Energy Source Model

Li-Ion Battery Model

Energy Module

CPU Energy Model

Power Module

Reliability Framework

Device Energy
Models

(c) Energy module and power module interconnection

Fig. 1: ns-3 integration of the reliability framework

policies between devices. All of these individual components are aggregated on
the Node objects to give them communication ability and set up networking
activity. Other modules, such as Routing, Mobility, and Energy, can be installed
to provide additional functionality to Nodes.

3.2 Overview of the Proposed Framework

Our proposed framework consists of separate modules for power, performance,
temperature, and reliability, as shown in Fig. 1b. IoT devices can run some ap-
plications to process the sensed or collected data before sending it to a central
entity. In this case, as soon as an application starts, the performance module first
calculates its execution time. Then, the power module gives an estimate of power
consumption within the execution interval of the application. If the IoT device is
not running any applications, then idle power consumption is estimated. Given
the power estimation, ambient temperature, the temperature module outputs an
estimated temperature, which is fed to the reliability module. Finally, reliability
is calculated based on temperature. The modules operate on two different time
scales: Long Intervals, on the order of days that it takes for reliability to change,
and Short Intervals, on the order of milliseconds. Both performance and power
values are updated every Short Interval. Reliability estimation is computation-
ally expensive, so it is only done once every Long Interval using the average
temperature over each interval. The underlying mechanisms of each module are
be explained in Section 4.

6 K. Ergun et al.

3.3 Integration with ns-3

As shown in Fig. 1a, our framework is implemented as an additional set of
modules that can be aggregated on the Nodes, adhering to the structure and
conventions of ns-3. The power and performance modules provide functions to
other modules for querying power consumption and execution time values. We
also provide an interface connecting the ns-3 energy module and our reliability
framework (Fig. 1c). The energy module (proposed in [27]) consists of a set of en-
ergy sources and device energy models. An EnergySourceModel is an abstraction
for the power supply (e.g. battery) of a Node. The DeviceEnergyModels represent
energy consuming components of a Node, for example, a WiFi radio. We imple-
ment a model called CPUEnergyModel as a child class of DeviceEnergyModel.
The features of CPUEnergyModel are as follows:

– It is designed to be state-based, where the CPU can take the states Idle or
Busy. The CPU will be Busy while processing packets received, e.g., while
executing some applications such as encryption, decryption, compression, or
Machine Learning (ML) algorithms.

– To determine when a transition occurs between states, a PhyListener is used.
In ns-3, PhyListener is an object that monitors the network packet trans-
missions and receptions at the physical (PHY) layer. After an Idle node
completes receiving data of specified size, the PhyListener notifies CPUEn-
ergyModel. Then, the specified application is executed and state is set to
Busy.

– It calculates the total energy consumed according to the power consumption
value acquired from the power module and the execution time value acquired
from the performance module. Then, it updates the remaining energy of the
energy source described by EnergySourceModel.

4 Modules and Device Behavior Modeling

In this section, we describe the functionality of the proposed modules and inter-
faces and present underlying models in detail.

4.1 Power Module

The power module supports functions for running and terminating an appli-
cation and switching between CPU states Idle and Busy. The value of power
consumption is updated at a predefined period Short Interval, according to the
selected power model. The power and temperature modules are interconnected;
power consumption updates subsequently lead to temperature updates.

From cycle-accurate, instruction-level analysis to functional-level analysis,
there are numerous power modeling techniques at different levels of abstrac-
tion. Low-level models use a fine-grain representation of the CPU, which usually
implies that the time required for power estimation is large due to high compu-
tational complexity. This is undesirable for network simulations because it be-
comes very time consuming to simulate networks with a great number of nodes.
In our framework, we offer two CPU power models having low model complexity
while still providing good estimation accuracy. To improve the extensibility of

RelIoT : Reliability Simulator for IoT Networks 7

the simulator for custom applications, we have included functionality for users
to add new models to the power module. Parameters of the power models are
configurable through external interfaces.

Frequency & Utilization-based Power Model. The idea of estimating CPU
power consumption on embedded devices based on CPU frequency and utiliza-
tion is well studied. In a previous work [31], the authors use a linear combination
of frequency and utilization to characterize the CPU power of a smartphone,
achieving less than 2.5% average error. Similarly, we use linear models in our
simulator to predict CPU power consumption PCPU . The equation is given as:

PCPU (t) = a · f(t) + b · u(t) + c (1)

where f(t) and u(t) are CPU frequency and utilization at time t respectively.
The coefficients a, b, c are learned through linear regression based on datasets col-
lected on real devices. The frequency & utilization-based power model provides
a good estimation accuracy for CPU power estimation on embedded devices.
However, it requires frequency and utilization traces as inputs to the simulator
which might not be available in practice.

Application-based Power Model. The power consumption of embedded de-
vices varies depending on the running application. An application-based model
is convenient when there are only high-level functional properties are available,
e.g. input data size. Different applications have different power trends (i.e. lin-
ear, exponential, etc.) as the size of input data increases. Furthermore, the power
consumed by running the same applications varies for different devices. In our
framework, we adopt the modeling methodology proposed in [11], where the au-
thors characterize and verify power models of running ML algorithms on edge
devices (i.e. Raspberry Pi) and servers. They train, test, and cross-validate four
regression models (linear, polynomial, log, and exponential regression), and se-
lect the best one. The input is the size of processed data by the application and
the output is power consumption for these models. We leverage this methodol-
ogy to deploy models for Raspberry Pi’s and servers, but also apply the same
methodology to build our own models for microcontrollers such as Arduinos.
In addition to the 22 ML algorithms modeled in [11], our framework delivers
a CPU power model for Multilayer Perceptron (MLP) based on the number
of MAC (multiply-accumulate) operations. The same modeling approach can
be applied to other neural network architectures such as Convolutional Neural
Networks (CNNs).

4.2 Performance Module

IoT systems usually need to satisfy some performance requirements to provide
adequate Quality of Service (QoS). To evaluate and monitor the performance
of deployed applications and hence the overall network, we implement a per-
formance module. Various metrics can be used to quantify performance, e.g.,
throughput, response time, etc. The performance metric is application-specific.
For example, delay and throughput are critical in multimedia streaming appli-
cations whereas information accuracy is the main criterion for performance in
some ML applications.

In our current release, we provide an Execution Time Model. We use the
input data size of the application or number of MAC operations it needs to

8 K. Ergun et al.

perform to estimate the application execution time. To build the model, we
measure the execution times of various applications on a target device, then
fit regression models to the collected data. Certain performance metrics can be
calculated using the execution time value. For example, let texec be the execution
time of an application, then its throughput can be obtained as D/texec where
D is the input data size. In addition, end-to-end delay of a network path can
be computed as the sum of communication and computation delays among the
path (communication delay can be obtained using default ns-3 modules).

For both the power and performance modules, users are able to configure
coefficients of the existing model or add new models with provided APIs.

4.3 Temperature Module

The goal of the temperature module is to estimate CPU temperature (based on
CPU power consumption and ambient temperature) and to calculate the average
temperature over a Long Interval. We adopt a thermal modeling strategy that
can be used for any IoT device.

We assume that we do not have knowledge about the information describing
topological and physical parameters of the device (e.g., we do not know material
characteristics and layers of the devices’ PCB board) so we cannot do a physi-
cal simulation of the process. To have an acceptable level of complexity in our
simulator, we work on high-level information gathered from the coarse-grained
thermal sensors of the device’s key heat sources. Such information is available
in most of the devices today like smartphones and single-board computers (e.g.,
Raspberry Pi).

Let the number of the heat sources be n and let Tk ∈ Rn represent the
vector of temperatures observed by thermal sensors and Pk ∈ Rn be the power
consumed by the heat sources at time instant k. Each heat source is assumed
to have one thermal sensor measuring its temperature. Then, temperature Tk+1

at time instant k + 1 can be predicted given the current temperature Tk and
power Pk at time k. The discrete-time state-space model of the device’s thermal
behavior is expressed in Equation (2) [8].

Tk+1 = A · Tk +B · Pk + C · T envk (2)

where A,B ∈ Rn×n are defined as the state and the input matrices. T envk
is the ambient temperature and C is a vector of coefficients which weighs the
impact of ambient temperature on each heat source’s internal temperature. We
use system identification methods to derive the model from measured power
and temperature traces. A, B and C parameters are different for each class of
devices, so we offer multiple device thermal models and made the parameters
configurable through the temperature module API. The order of the model is
equal to the number of the heat sources n. In our initial work, we use n = 1,
where the only source is CPU. However, the extension to multiple sources is
straightforward in our framework. For example, if a power model for GPU is
provided, then power consumption values from both CPU and GPU can be used
to predict temperature.

The temperature module updates the states in Equation (2) at a time reso-
lution of Short Interval, the same time granularity as power estimation updates.

RelIoT : Reliability Simulator for IoT Networks 9

On the other hand, average temperature T̄ is calculated for every Long Interval
denoted LI. T̄ is the exponential moving average of past temperature values in
the interval k to k + LI.

T̄k+1 = α · Tk − (1− α) · T̄LI (3)

where α is a weighing coefficient that is configured depending on the length of
interval LI.

4.4 Reliability Module

The reliability module is the last component in the power, temperature, relia-
bility module hierarchy. Temperature is estimated using power, while reliability
is estimated using temperature. Unlike power and temperature, reliability is
a slowly changing variable. Therefore, reliability can be estimated on a longer
time scale, on the order of hours or days. Reliability degradation is affected more
by average stress over a long time interval rather than instantaneous stress. We
leverage these properties to calculate reliability sparsely because reliability mod-
els are highly compute-intensive. The reliability module does estimation every
Long Interval, using temperatures averaged over the interval. It polls the tem-
perature module to fetch the average temperature T̄LI every LI, then T̄LI is reset
to start a new averaging operation.

Reliability is defined as the probability of not having failures before a given
time t. To obtain the overall reliability of a processor, the effects of different
failure mechanisms should be combined. We use the sum-of-failure-rates model
as in RAMP [23], which states that the processor is a series failure system; the
first instance of a failure due to any mechanism causes the entire processor to
fail. In our reliability model, the single device reliability is a product of the reli-
abilities due to different failure mechanisms such as Time Dependent Dielectric
Breakdown (TDDB), Negative Bias Temperature Instability (NBTI), Hot Car-
rier Injection (HCI), Electromigration (EM) and Thermal Cycling (TC). These
mechanisms all depend on thermals.

Time Dependent Dielectric Breakdown (TDDB) Reliability Model. The thin
gate oxide layer in transistors introduces a risk of breakdown and shortening
devices lifetime. Due to gate oxide degradation, which is a non-reversible mech-
anism with a cumulatively increasing impact, a breakdown occurs. The reliability
of a single transistor i with oxide thickness xi subject to oxide degradation can
be expressed as [24]:

Ri(t) = e−a(
t
γ)
βxi

(4)

where t is the time-to-breakdown, a is the device area normalized with respect to
the minimum area, and γ and β are respectively the scale parameter and shape
parameter. The scale parameter γ represents the characteristic life, which is the
time where 63.2% of devices fail, and it depends on voltage and temperature.
The shape parameter β, instead, is a function of the critical defect density, which
in turn depends on oxide thickness, temperature and applied voltage. R(t) is a
monotonically decreasing function with values in the range of [0, 1] indicating
the probability that the system will not fail.

The reliability of the entire chip RC can be expressed as the product of single
transistor reliabilities:

10 K. Ergun et al.

RC(t) =

m∏
i=1

Ri(t) = e
∑m
i=1 −ai(tγi)

βixi

(5)

m is the number of transistors on the chip which can be on the order of millions.
Since different regions of the chip have similar temperatures, the complexity
possessed by large m on the computation of Equation (5) can be reduced by
assuming the same scale and shape parameters over the chip [32].

The RC expression in Equation (5) assumes a constant temperature applied
from time t = 0, thus it is only representative of static systems. To capture the
dynamics of reliability under varying temperature, we discretize the time and
calculate reliability at each time step as shown in Equation (6). The temperature
is assumed to be constant between discrete time steps.

Rk = Rk−1 −
(
RC(tk−1, Tk−1,k)−RC(tk, Tk−1,k)

)
(6)

In Equation (6), k indicates the kth time instant and Tk−1,k is the temperature
experienced by the chip between the time instants k − 1 and k. We set this
interval between adjacent time steps as the Long Interval and let Tk−1,k be
equal to the average temperature T̄LI of the corresponding LI.

The reliability module can work with any failure mechanism or combination
of multiple mechanisms as long as the mechanism can be described by a function
RC(t), as in Equation (5). For example, the module can be extended to include
NBTI and HCI if we describe the reliability functions associated with these
mechanisms, respectively RNBTI and RHCI . Then, by the sum-of-failure-rates
approach, the reliability module calculates the total system reliability as the
product of the functions associated with the single mechanisms as RC(t) =
RTDDB(t) ·RNBTI(t) ·RHCI(t). Equation (6) would not need any modifications
since it is general and does not depend on a specific RC(t).

5 Experiments and Results

In this section, we first present validation results on a three-node network topol-
ogy, comparing power, performance, and temperature measurements from exper-
iments with the simulated traces. We then use a testbed with a mesh network
of 10 heterogeneous nodes to evaluate the accuracy of the simulator under dif-
ferent networking conditions and temperatures. We cannot explicitly validate
reliability because it requires long term experiments and specialized degradation
sensors. Finally, we illustrate how the proposed simulator is useful in explor-
ing energy, performance, reliability trade-offs in a network and show that it
can be used to implement reliability-aware strategies. We analyze examples of
energy-optimized and reliability-optimized network configurations to motivate
reliability-aware network design and management.

5.1 Validation and Evaluation

Three-Node Network Topology. To validate the device models and to ver-
ify the functionality of the simulator modules, we use a simple three-node net-
work. The setup consists of an ESP8266 WiFi microchip with microcontroller, a
Raspberry Pi 3 (RPi3), and a PC. The devices communicate over WiFi (IEEE
802.11b) and transmit/receive TCP/IP packets using MQTT protocol [4]. The

RelIoT : Reliability Simulator for IoT Networks 11

ESP8266 samples random data as a sensor node, runs median filtering to prepro-
cess the data, and sends filtered data to RPi3. The data is further processed by
an application on the RPi3, or the computation can be offloaded to the PC. This
type of computation offloading is common in IoT edge devices and is represen-
tative of their usual operation [21]. If the application is chosen to be offloaded,
then the RPi3 is only responsible of relaying incoming data to the PC.

In our three-node experiments, we collected 5 different measurements syn-
chronously:

(i) RPi3 power consumption (via HIOKI 3334 power meter [2]),
(ii) RPi3 CPU temperature (via built-in temperature sensor),
(iii) ESP8266 power consumption (via INA219 power monitor [3]),
(iv) ESP8266 CPU temperature (via built-in temperature sensor),
(v) Ambient temperature (via DHT22 temperature sensor [1]).

0 5 10 15 20 25 30 35

Time(s)

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

0

10

20

30

40

50

60

70

Power - Measurement

Power - Simulation

Temperature - Measurement

Temperature - Simulation

0 5 10 15 20 25 30 35

Time [s]

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

0

10

20

30

40

50

60

70

Power - Measurement

Power - Simulation

Temperature - Measurement

Temperature - Simulation

Fig. 2: RPi3 power and temperature traces

Measurements and simulation results are presented in Fig. 2 for an example
test case under two different ambient temperatures. The goal here is to show
a temporal view of the simulator output, particularly in a dynamic case where
the simulated device has a varying workload. In this experiment, the RPi3 runs
a data processing application with incoming data input from ESP8266 for the
first 15-20 seconds. After that, the application is offloaded to the PC and the
RPi3 only relays data while its CPU is idle. As shown in Fig. 2, the simulator
output follows the real power and temperature traces with a mean error of 3.42%
and 6.19% in low ambient temperature, and with a mean error of 2.69% and
3.97% in high ambient temperature. The discrepancy between real and simulated
temperatures at the beginning of each plot is because of the initial condition set
for the temperature in the simulator. The temperature starts from a lower initial
condition and reaches a steady-state value.

Overall, applying the same modeling methodology of reference [11], we esti-
mate the execution time and energy consumption of the RPi3 for 23 different ML
applications with average errors of 3.8% and 4.5%, respectively. For the CPU
temperature, the state-space model predictions stays within ±1.5°C of measure-
ments at steady-state, for all applications.

Mesh Network Topology. To show that our simulator can correctly capture
devices’ behavior in a more complicated scenario, we simulate a larger network
under different configurations and operating conditions, then validate it using
our testbed. As shown in Fig. 3, the testbed spans a whole floor in UCSD CSE

12 K. Ergun et al.

ESP3

RPi3

RPi0

ESP

Fig. 3: Mesh network topology

department building, including two Raspberry Pi 3 (RPi3), four Raspberry Pi 0
(RPi0) and four ESP8266. Data is generated from each node and communicated
to the sink node RPi31 in multiple hops via MQTT. The network of all RPis
works in an ad-hoc manner, while all ESP8266s forward their data to RPi32
that is a gateway for that local area. Not all devices can communicate with each
other because some pairs are out of communication range. The connections are
depicted in Fig. 3. Using this setup, we both implement and simulate following
scenarios:

Scenario 1 RPi31 and RPi01 process the data, while the other devices only
communicate.The ambient temperature for each network device is approxi-
mately 25℃.

Scenario 2 The same devices process data as Scenario 1. We use a heater that
raises the ambient temperature around RPi01 to 37 ℃, while the rest of the
devices are in the normal ambient condition of 25 ℃.

Scenario 3 The data processing duties of RPi31 and RPi01 are distributed
between RPi02, RPi03, and RPi04. Therefore, each of these three devices
only transmits the outputs of data processing tasks to RPi01, which directly
forwards them to RPi31. RPi01 is still in a heated environment of 37 ℃.

An ML application can be split and distributed to edge devices, which al-
lows us to realize the different configurations in these scenarios for allocating
data processing without changing the overall application behavior [26,28]. Fig. 4
illustrate the power and temperature distribution of the devices, while Fig. 5
shows the simulated reliability traces in a year. We only depict the measure-
ment and simulation statistics on RPi0s in each scenario, but the rest show
similar trends. Comparing collected traces to simulation logs, our result shows
that RelIoT is able to estimate average power within ±0.11 W (∼11%), and
average temperature within ±4 °C (∼9%). It can be seen from Fig. 4 that, al-
though extremities in both power and temperature are difficult to track, RelIoT
is able to precisely capture the averages in different configurations. Scenario 3
distributes the workload to other RPi0s, thus significantly reduces the network
traffic. Consequently, power and temperature of both RPi01 and the rest RPi0s
drop, which is also reflected in the simulation RelIoT starts simulation from a
device temperature of 35 ℃, which explains why the minimum temperature of
RelIoT consistently locates at 35 ℃.

RelIoT : Reliability Simulator for IoT Networks 13

Fig. 4: Collected and simulated statistics of RPi0s (average, max, and min values).

Fig. 5: Reliability degradation of RPi0s in one year.

The power and temperature validation experiments lasts 300s, but we simu-
late the network for a time-span of one year to observe the long-term reliability
changes. The stair pattern in Fig. 5 is a result of RelIoT updating the reli-
ability by the end of each Long Interval. In all scenarios, reliability remains
fairly high if the device is in normal ambient temperature. In Scenario 1, RPi01
degrades slightly faster than the rest of the RPi0s due to its data processing
workload. However, in Scenario 2, the raised ambient temperature together with
its workload lead to a drastic degradation in reliability. In such case, workload
reallocation as in Scenario 3 can alleviate degradation. The network devices in
environments with low temperatures can take on a higher workload to mitigate
reliability problems of the quickly degrading devices. The result in Fig. 5 implies
the necessity for reliability-aware management in IoT networks.

5.2 Reliability-Aware Management

Most of the IoT devices are battery-powered and/or rely on energy harvesters
with limited energy sources. Therefore, traditionally, many network manage-
ment solutions aim at optimizing the energy consumption while satisfying some
Quality-of-Service (QoS) constraints (throughput, delay, jitter, network cover-
age, etc.). In this context, reliability is also a design parameter that can be
optimized or a certain overall reliability constraint can be subjected to the net-
work. Although correlated, the optimal energy efficiency and reliability usually
are not ensured by the same management strategy. The designers need to find

14 K. Ergun et al.

good trade-offs between energy savings and reliability. In this section, we show
how our simulator addresses this issue by making reliability-aware management
and design possible. To emphasize the differences between two approaches and to
motivate reliability-aware management, we provide simulation results for differ-
ent scenarios of energy-optimized and reliability-optimized network management
strategies using the topology in Fig. 3.

Energy-Optimized. Our interest here is to partition an application into smaller
tasks and find the task allocation that maximizes the lifetime of a network. Many
ML applications can be partitioned while preserving functionality [26, 28]. For
each device in the network, the energy consumed for computing and communi-
cating data of size s is given as:

Computation: P ξdevice(s)× texec(s) (7)

Communication: Pwifi(d,BW)× s

BW
(8)

where ξ denotes the application, texec is the application execution time, d de-
notes the communication distance, and BW is the communication bandwidth.
Pwifi(d,BW) is the power consumption of WiFi which can be parameterized by
distance and bandwidth allocation BW [11]. In an energy-optimized application
partition, the mapping of tasks to the devices depends on:

(i) Power characteristics of the application,
(ii) Execution time,
(iii) Allocated bandwidth,
(iv) Distance between the neighbouring devices.

We adopt the convex optimization formulation from [15] and apply it to our
problem, with a slight modification by adding the computation energy term in
Equation (7). We find the optimal partitioning of the application such that the
maximum energy consumption among network devices due to computation and
communication of the data is minimized.

Reliability-Optimized. Similar to the previous case, we map the tasks of an
application to the network devices. We use the same solution approach, but
this time, the objective is to maximize the minimum reliability among network
devices. Reliability of each device is RC,device(t, T), which is dependent on time
and temperature. We simulate a time horizon tsim, so we want to optimize for
RC,device(tsim, T). This is under the assumption of environment temperature
Tamb being constant for the entire horizon. In the following experiments, a static
solution (constant for the whole time horizon) is simulated for both energy-
optimized and reliability-optimized cases, but it can be made dynamic by solving
for the current energy and reliability estimates at each time instant, as in (6). In
this way, the solution can adapt to changing network configurations (bandwidth,
applications) and operating conditions (environment temperature).

Fig. 6 presents the comparison of energy-optimized and reliability-optimized
solutions for different bandwidth and environment temperature configurations.
The network devices run a part of a data processing application where the op-
timal partitions are determined by the two approaches. The energy-optimized
partition brings 1.0%, 9.1%, and 10.9% better energy efficiency compared to

RelIoT : Reliability Simulator for IoT Networks 15

BW = 0.1Mbps BW = 1Mbps BW = 10Mbps
0

0.2

0.4

0.6

0.8

1

1.2

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

Energy-Optimized

Reliability-Optimized

T = 30°C

T = 25°C T = 30°C T = 35°C
0

0.2

0.4

0.6

0.8

1

1.2

N
o
rm

a
liz

e
d
 R

e
lia

b
ili

ty
 D

e
g
ra

d
a
ti
o
n

Energy-Optimized

Reliability-Optimized

BW = 1Mbps

Fig. 6: Energy consumption and reliability degradation results for two approaches

the reliability-optimized partition for 0.1Mbps, 1Mbps, and 10Mbps bandwidth
configurations respectively. Referring to equation (8), it can be seen that as band-
width increases, the time it takes to communicate data of size s decreases, hence,
decreasing the communication energy. The difference of energy efficiencies be-
tween two solutions are increasing with bandwidth because the energy-optimized
solution leverages the decrease in communication energy and allocates more com-
munication instead of computation to the higher energy consuming network de-
vices. On the other hand, the reliability-optimized partition results in 25.0% ,
28.2%, and 24.5% less reliability degradation compared to the energy-optimized
partition for 25°C, 30°C, and 35°C environment temperatures respectively. The
reliability-optimized solution allocates less computation on the most degrading
network devices, conserving reliability. These results show that, although being
correlated, the optimal energy efficiency and reliability do not yield from the
same management strategy. Therefore, if the concern is particularly the reliabil-
ity, a reliability-aware management strategy should be adopted.

6 Conclusion

We presented a novel framework for the reliability analysis of IoT networks us-
ing the ns-3 network simulator. The proposed framework can be used to explore
trade-offs between power, performance, and reliability of devices in a network.
We validated our reliability framework in two experimental setups: a three-node
network and a ten-node mesh network. Additionally, we motivated the need
for reliability-aware management through example simulation results of energy-
optimized and reliability-optimized management strategies. As future work, we
plan to leverage our framework for design space exploration (DSE) of IoT net-
works. We can simulate, explore, and check the feasibility of different network
configurations in terms of different objectives such as energy efficiency, reliabil-
ity, and performance. We believe that our contribution will help researchers to
study the reliability degradation problem in large-scale networks.

7 Acknowledgements
This work was supported in part by SRC task #2805.001, NSF grants #1911095,
#1826967, #1730158 and #1527034, and by KACST.

16 K. Ergun et al.

References

1. DHT22 Datasheet. https://www.sparkfun.com/datasheets/Sensors/
Temperature/DHT22.pdf/, [Online]

2. Hioki3334 Powermeter. https://www.hioki.com/en/products/detail/
?product_key=5812, [Online]

3. INA219 Datasheet. http://www.ti.com/lit/ds/symlink/ina219.pdf/, [Online]
4. MQTT MQ Telemetry Transport. https://mqtt.org/, [Online]
5. OMNeT++ Discrete Event Simulator. https://omnetpp.org/, [Online]
6. The ns-3 Network Simulator. https://www.nsnam.org/, [Online]
7. : ”The Hidden Costs of Delivering IIoT. https://www.

cisco.com/c/dam/m/en_ca/never-better/manufacture/pdfs/
hidden-costs-of-delivering-iiot-services-white-paper.pdf (2016), [On-
line]

8. Beneventi, F., Bartolini, A., Tilli, A., Benini, L.: An Effective Gray-Box Identifica-
tion Procedure for Multicore Thermal Modeling. IEEE Transactions on Computers
63(5), 1097–1110 (2012)

9. Chang, X.: Network Simulations with OPNET. In: WSC’99. 1999 Winter Sim-
ulation Conference Proceedings.’Simulation-A Bridge to the Future’(Cat. No.
99CH37038). vol. 1, pp. 307–314. IEEE (1999)

10. Coskun, A.K., Rosing, T.S., Whisnant, K.: Temperature Aware Task Scheduling in
MPSoCs. In: 2007 Design, Automation & Test in Europe Conference & Exhibition.
pp. 1–6. IEEE (2007)

11. Cui, W., Kim, Y., Rosing, T.S.: Cross-Platform Machine Learning Characterization
for Task Allocation in IoT Ecosystems. In: 2017 IEEE 7th Annual Computing and
Communication Workshop and Conference (CCWC). pp. 1–7. IEEE (2017)

12. Ergun, K., Ayoub, R., Mercati, P., Rosing, T.: Dynamic optimiza-
tion of battery health in iot networks. In: 2019 IEEE 37th Interna-
tional Conference on Computer Design (ICCD). pp. 648–655 (Nov 2019).
https://doi.org/10.1109/ICCD46524.2019.00093

13. Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R.: iFogSim: A Toolkit for
Modeling and Simulation of Resource Management Techniques in the Internet of
Things, Edge and Fog Computing Environments. Software: Practice and Experi-
ence 47(9), 1275–1296 (2017)

14. International Data Corporation: The Growth in Connected IoT Devices. https:
//www.idc.com/getdoc.jsp?containerId=prUS45213219 (2019), [Online]

15. Jae-Hwan Chang, Tassiulas, L.: Maximum lifetime routing in wireless sensor
networks. IEEE/ACM Transactions on Networking 12(4), 609–619 (Aug 2004).
https://doi.org/10.1109/TNET.2004.833122

16. Karl, E., Blaauw, D., Sylvester, D., Mudge, T.: Reliability Modeling and Man-
agement in Dynamic Microprocessor-Based Systems. In: Proceedings of the 43rd
annual Design Automation Conference. pp. 1057–1060. ACM (2006)

17. Mercati, P., Paterna, F., Bartolini, A., Benini, L., Rosing, T.Š.: Warm:
Workload-Aware Reliability Management in Linux/Android. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 36(9), 1557–1570
(2016)

18. Minakov, I., Passerone, R.: PASES: An Energy-Aware Design Space Exploration
Framework for Wireless Sensor Networks. Journal of Systems Architecture 59(8),
626–642 (2013)

19. Nikolaev, S., Banks, E., Barnes, P.D., Jefferson, D.R., Smith, S.: Pushing the en-
velope in distributed ns-3 simulations: One billion nodes. In: Proceedings of the
2015 Workshop on Ns-3. p. 67–74. WNS3 ’15, Association for Computing Ma-
chinery, New York, NY, USA (2015). https://doi.org/10.1145/2756509.2756525,
https://doi.org/10.1145/2756509.2756525

RelIoT : Reliability Simulator for IoT Networks 17

20. Nikolaev, S., Barnes, P.D., Brase, J.M., Canales, T.W., Jefferson, D.R., Smith,
S., Soltz, R.A., Scheibel, P.J.: Performance of distributed ns-3 network simulator.
In: Proceedings of the 6th International ICST Conference on Simulation Tools
and Techniques. p. 17–23. SimuTools ’13, ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), Brussels, BEL (2013)

21. Samie, F., Tsoutsouras, V., Masouros, D., Bauer, L., Soudris, D., Henkel, J.: Fast
operation mode selection for highly efficient iot edge devices. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems pp. 1–1 (2019).
https://doi.org/10.1109/TCAD.2019.2897633

22. Sonmez, C., Ozgovde, A., Ersoy, C.: EdgeCloudSim: An Environment for Per-
formance Evaluation of Edge Computing Systems. Transactions on Emerging
Telecommunications Technologies 29(11), e3493 (2018)

23. Srinivasan, J., Adve, S.V., Bose, P., Rivers, J.A.: The Case for Lifetime Reliability-
Aware Microprocessors. In: ACM SIGARCH Computer Architecture News. vol. 32,
p. 276. IEEE Computer Society (2004)

24. Stathis, J.H.: Physical and Predictive Models of Ultrathin Oxide Reliability in
CMOS Devices and Circuits. IEEE Transactions on Device and Materials Relia-
bility 1(1), 43–59 (2001)

25. Tapparello, C., Ayatollahi, H., Heinzelman, W.: Energy Harvesting Framework for
Network Simulator 3 (ns-3). In: Proceedings of the 2nd International Workshop on
Energy Neutral Sensing Systems. pp. 37–42. ACM (2014)

26. Thomas, A., Guo, Y., Kim, Y., Aksanli, B., Kumar, A., Rosing, T.S.: Hierarchical
and distributed machine learning inference beyond the edge. In: 2019 IEEE 16th
International Conference on Networking, Sensing and Control (ICNSC). pp. 18–23
(May 2019). https://doi.org/10.1109/ICNSC.2019.8743164

27. Wu, H., Nabar, S., Poovendran, R.: An Energy Framework for the Network Sim-
ulator 3 (ns-3). In: Proceedings of the 4th international ICST conference on simu-
lation tools and techniques. pp. 222–230. ICST (Institute for Computer Sciences,
Social-Informatics and . . . (2011)

28. Yao, S., Zhao, Y., Zhang, A., Su, L., Abdelzaher, T.: Deepiot: Compressing deep
neural network structures for sensing systems with a compressor-critic framework.
In: Proceedings of the 15th ACM Conference on Embedded Network Sensor Sys-
tems. pp. 1–14 (2017)

29. Zhai, D., Zhang, R., Cai, L., Li, B., Jiang, Y.: Energy-Efficient User Scheduling and
Power Allocation for NOMA-Based Wireless Networks with Massive IoT Devices.
IEEE Internet of Things Journal 5(3), 1857–1868 (2018)

30. Zhang, H., Xiao, Y., Bu, S., Niyato, D., Yu, F.R., Han, Z.: Computing Resource
Allocation in Three-Tier IoT Fog Networks: A Joint Optimization Approach Com-
bining Stackelberg Game and Matching. IEEE Internet of Things Journal 4(5),
1204–1215 (2017)

31. Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R.P., Mao, Z.M., Yang,
L.: Accurate Online Power Estimation and Automatic Battery Behavior Based
Power Model Generation for Smartphones. In: Proceedings of the eighth
IEEE/ACM/IFIP international conference on Hardware/software codesign and
system synthesis. pp. 105–114. ACM (2010)

32. Zhuo, C., Sylvester, D., Blaauw, D.: Process Variation and Temperature-Aware
Reliability Management. In: Proceedings of the Conference on Design, Automation
and Test in Europe. pp. 580–585. European Design and Automation Association
(2010)

