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Federated Learning (FL)

● Federated Learning is a machine learning technique that trains a model 
across multiple distributed edge devices without exchanging local data 
samples

2
Figure source: Li, Tian, et al. "Federated learning: Challenges, methods, and future directions." IEEE 
Signal Processing Magazine 37.3 (2020): 50-60.
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Cloud Server

Federated Averaging (FedAvg) [1]

3
[1] McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial 
Intelligence and Statistics. PMLR, 2017.
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Cloud Server

Federated Averaging (FedAvg) [1]

4
[1] McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial 
Intelligence and Statistics. PMLR, 2017.

Local Loss

2. Local training: SGD of 𝐸 epochs

𝐿! 𝐿# 𝐿$
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Federated Averaging (FedAvg) [1]

5
[1] McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial 
Intelligence and Statistics. PMLR, 2017.

3. Cloud collects updated 
models and aggregates 

weights averagely
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Sync Federated Learning (e.g., FedAvg) 
may end up with significant slow down in IoT networks!!
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Motivating Example: Federated Learning in NYCMesh
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● NYCMesh [2] is a wireless mesh network in 
New York City, which mimics the future 
large-scale network backbone in smart cities

[2] NYCMesh. https://www.nycmesh.net/.

Each hub has a camera

● Potential Federated Learning applications in 
NYCMesh:
● Traffic monitoring
● Noise monitoring
● Video surveillance
● …

https://www.nycmesh.net/


System	Energy	Efficiency	Lab
seelab.ucsd.edu

Motivation: Unique Challenges of Hierarchical IoT Networks

7

Unique challenges of FL in Hierarchical IoT Networks!

● Heterogeneous data distribution

● Heterogeneous system capabilities
● Computation + Communication

● Hierarchical network organization 
(e.g., mesh networks)

● Unexpected stragglers 
(e.g., device or link failures)
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Previous Works
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● Sync FL: based on FedAvg
● Client selection: DivFL [ICLR’21],

Oort [OSDI’21], PyramidFL [MobiCom’22]
● (-) Significant delays in largely varied networks

● Async and semi-async FL
● TrisaFed [IoT-J’22], FedBuff [AISTATS’22]
● (-) Convergence challenges

● Hierarchical FL
● Sync aggregation at gateway and cloud: 

SHARE [ICDCS’21]
● Sync aggregation at gateway and async

aggregation at cloud: RFL-HA [INFOCOM’21]
● (-) Suffer from stragglers

Async-HFL is the first end-to-end framework that addresses all 
challenges in a hierarchical and unreliable IoT networks!

Async FL

Server 
timeline

Agg Agg Agg

Semi-Async FL

Agg

Sync Agg

Period
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Our Contributions: Async-HFL

9

● Async-HFL is designed around three components to balance the data, system & 
network perspectives along with reacting timely to stragglers:

Async + hierarchical FL algorithm

Gateway-level device selection

Cloud-level device-gateway 
association

The managing framework of Async-HFL
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Theoretical Contribution: 
Convergence Analysis of Async-HFL
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• Asynchronous aggregation at both the gateway and cloud inspired from FedAsync [3]
• Two techniques are used to ensure convergence

[3] Xie, Cong, Sanmi Koyejo, and Indranil Gupta. "Asynchronous federated optimization." arXiv preprint 
arXiv:1903.03934 (2019).

Regularized local loss function at device

Staleness-aware aggregation at gateway/cloud

Async Aggregation

• Convergence analysis:
• Assume: 𝐿-smoothness, 𝜇-weak convexity, bounded gradients, bounded delay, sufficient 

regularization 𝜌

Penalize changes to global 
model thus ensure convergence

Aggregate based on the “age” of 
the model

Staleness function
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Modeling Data and System Heterogeneities
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● Data Heterogeneity: we define a learning utility metric for each client based on the direction of 
compressed gradients

𝑢, = 𝜂, + 𝑣,
Gradient Affinity: 
Similarity between client’s 
gradient and global gradient

Gradient Diversity: 
Dissimilarity between 
clients’ gradients

● System Heterogeneity:
● The computational and communication 

latencies on edge devices Round latency: 𝜏!" = 𝜏"!# + 𝜏!$ + 𝜏!"%

Downlink 
latency

Computational 
latency

Uplink 
latency

● The feasible sensor-gateway connections 
at time 𝑡 to account real-time link/device 
failures

● Bandwidth limitation on sensor-gateway 
links
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Framework Management: 
Device Selection and Device-Gateway Association

12

● Gateway-level device selection:
○ Real-time selection of devices to 

trigger local training
○ Balance learning utility and round 

latency

● Gateway-level device selection and cloud-level device-gateway association collaboratively optimize 
practical convergence

● Cloud-level device-gateway association
○ Long-term network topology
○ Balance learning utility and 

throughput distribution under 
bandwidth limitation

Both problems are formulated as Integer Linear Program and solved by the Gurobi solver.
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Experimental Setup
● We validate Async-HFL on a large-scale simulation and a physical deployment

● Large-scale simulation: Simulation setup of NYCMesh in ns3-fl [4]
● Physical deployment: 20 RPis and 20 CPUs

13

RPis CPUs

Round latency time break-ups on the RPis and CPUs

● Implementation is based on FedML [5]

We spread the 
RPis in 7 
houses, all 
connected to the 
home Wi-Fi

Server RPi

[4] Ekaireb, Emily, et al. “ns3-fl: Simulating Federated Learning with ns-3”, WNS3, 2022.
[5] He, Chaoyang, et al. "Fedml: A research library and benchmark for federated machine learning." arXiv preprint 
arXiv:2007.13518 (2020).
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Experimental Setup (Cont.)
● Baselines:

○ Sync: random, TiFL [HPDC’20], 
DivFL [ICLR’21], Oort [OSDI’21]

○ Hybrid: RFL-HA [INFOCOM’21]
○ Async: random, high loss-first [SPAWC’21]

● Metric: The wall-clock convergence time to 
reach close-to-optimal accuracy

● Datasets and models:

14

Sync

Sync

Sync
Async

Sync

Hybrid
Async

Async

Async

Dataset Models Data Partition
MNIST, FashionMNIST CNN Synthetic
CIFAR-10 ResNet-18 Synthetic
Shakespeare, HPWREN LSTM Natural
HAR MLP Natural
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Sync 
baselines

Semi-async 
baselines

RFL-HA Async 
baselines

MNIST 27.13x 6.2x 32.5x 1.11x
FashionMNIST 20.5x 8.3x 36.7x 1.08x
CIFAR-10 44.3x 2.3x 12.3x 1.09x
Shakespeare 0.31x 0.59x 0.71x 1.19x
HAR 10.3x 2.7x 10.3x 1.31x
HPWREN 19.5x 2.4x 19.5x 1.11x

Large-Scale Simulation Results

● Async-HFL converges 1.08-1.31x faster in wall-clock time, and 
saves up to 21.6% regarding total communication costs 
compared to state-of-the-art async FL algorithm (with client 
selection) on all datasets

15

Convergence 
speedup of 
Async-HFL 
(over baselines)
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Physical Deployment Results

● Async-HFL ends up with higher accuracies on all datasets than the state-of-the-art 
asynchronous baseline at similar time

● Our physical deployment presents largely heterogeneous round latencies and potential 
stragglers due to unexpected failures

16
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Conclusion

● Existing FL designs suffer from significant delays and unexpected stragglers when 
considering hierarchical and unreliable IoT networks

● Async-HFL involves theoretical convergence analysis and practical framework 
design
● Async-HFL conducts asynchronous aggregations at both the gateway and cloud
● Async-HFL incorporates gateway-level device selection and cloud-level device-gateway

association to enhance practical convergence
● Async-HFL converges 1.08-1.31x faster in wall-clock time, and saves saves up to 

21.6% regarding total communication costs compared to state-of-the-art async FL 
algorithm (with client selection) on all datasets

● Code is available at https://github.com/Orienfish/Async-HFL

17

https://github.com/Orienfish/Async-HFL
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Our Insights of Practical FL Deployments

19

Uniform delays
Reliable networks

Varied delays
Unreliable
networks

Data 
centers

Hier. IoT 
Networks

● To deploy FL on a real-world network, there is no single framework that works for all settings

Best: 
Sync FL

Best: 
Async FL

Best: 
Semi-aync FL

Focus of 
Async-HFL
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● Major takeaways from the motivating study
● Async-HFL vs. sync, semi-async and RFL-HA baselines:

the three-tier Async-HFL achieves much faster convergence

Motivating Study: Federated Learning in NYCMesh

20

● We simulation FL in NYCMesh [2] using ns3-fl [3]
● We extract the latitude, longitude and rooftop 

height of nodes, then feed the locations to the 
HybridBuildingPropagationLossModel

● We add log-normal delay to simulate long-tail 
latency distribution in real deployments [4]

[2] NYCMesh. https://www.nycmesh.net/
[3] Ekaireb, Emily, et al. “ns3-fl: Simulating Federated Learning with ns-3”, WNS3, 2022.
[4] Sui, Kaixin, et al. “Characterizing and Improving Wi-Fi Latency Large-Scale Operational Networks”, MobiSys, 2016.

NYCMesh topology Round latency distributions in 
the NYCMesh setup184 edge devices, 6 gateways, 1 server

https://www.nycmesh.net/
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Framework Management (Cont.):
Device Selection and Device-Gateway Association

21

Input: averaged round latency per link 𝜏!"
latest compressed gradients per device ∇𝑔!

Intermediate: learning utility 𝑢!
Output: device for next gateway round 𝑑!

Gateway-Level Device Selection Cloud-Level Device-Gateway 
Association

Both problems are formulated as Integer Linear Program and solved by the Gurobi solver.

Input: 𝜏!", ∇𝑔!, feasible connections 𝑱&
Output: device-gateway association 𝑰&

Bandwidth 
limitation

Uniformly 
distributed 

learning utility 
and bandwidth

Feasible and 
valid connection
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Large-Scale Simulation Results

● Async-HFL achieves significantly faster wall-clock time convergence than the sync and 
hybrid FL algorithms (with client selection) on most datasets

● Async-HFL converges 1.08-1.31x faster in wall-clock time, and saves saves up to 21.6%
regarding total communication costs compared to state-of-the-art async FL algorithm (with 
client selection) on all datasets

22
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Ablation Studies

● Question: How does each of gateway-level device selection and cloud-level device-gateway 
association contribute to the convergence speedup separately?

23

● We evaluate (i) pure random selections, (ii) only device selection, (iii) only device-gateway-
association, (iv) the full Async-HFL on all datasets

● Device selection dominates on MNIST and HAR, device-gateway association dominates on 
Shakespeare, while both modules contribute collaboratively on HPWREN


