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Edge Computing is Growing Exponentially!

● The global edge computing market size is expected to expand at a compound 
annual growth rate (CAGR) of 37.9% from 2023 to 20301

21. https://www.grandviewresearch.com/industry-analysis/edge-computing-market
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Motivating Problem: 
Deploying Intelligence for Environmental Monitoring
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● Enabling ML training pervasively in IoT applications is an active research 
area, which calls for sophisticated designs on single device level, sensor
network level, and large-scale deployment level.
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Roadmap to Intelligence in IoT
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Drifting, noisy data;
Limited supervision

● Enabling ML training pervasively in IoT applications is an active research 
area, which calls for sophisticated designs on single device level, sensor
network level, and large-scale deployment level.
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Roadmap to Intelligence in IoT
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Heterogeneous, 
unstable 
networks

● Enabling ML training pervasively in IoT applications is an active research 
area, which calls for sophisticated designs on single device level, sensor
network level, and large-scale deployment level.
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Roadmap to Intelligence in IoT
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Costs, sustainability, 
reliability

● Enabling ML training pervasively in IoT applications is an active research 
area, which calls for sophisticated designs on single device level, sensor
network level, and large-scale deployment level.
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Thesis Statement
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● My PhD research targets at contributing a full stack of technologies in all 
three levels, for enabling pervasive intelligence deployments in IoT
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Online Unsupervised Lifelong Learning
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Online Unsupervised Lifelong Learning
1. X. Yu, Y. Guo, S. Gao, T. Rosing, “SCALE: Online Unsupervised Lifelong Learning 

without Prior Knowledge”, CLVision’23
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Catastrophic Forgetting [McCloskey 1989]

● Goal: After deployment, train an ML model on the device

9

Prediction: apple

Prediction: banana

Prediction: ?

Day 1

Day 100

Day 2-99
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Catastrophic Forgetting and Lifelong Learning

● Lifelong learning (or continual learning)
● To continually learn over time by acquiring new knowledge as well as consolidating past 

experiences
● Key assumption: continuously changing environments

10

Prediction: ?After seeing several 
days of banana…

● Key challenge: 
● Knowledge interference in NNs
● Limited memory storage
● Previous works rely on prior knowledge (e.g., task boundary) to produce good results
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SCALE: Self-Supervised Contrastive Learning
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● We propose SCALE to extract and memorize knowledge in an online and unsupervised 
manner 

● We focus on the online, unsupervised lifelong learning problem without prior knowledge 

Inspired by contrastive learning, 
SCALE enhances the similarity of 
samples in a pseudo-positive set

SCALE uses a self-supervised 
forgetting loss to retain pairwise 

similarity (as knowledge) 

SCALE employs a uniform online 
memory update strategy 
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Experimental Results
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Accuracy on 
sequential 

CIFAR-10 and 
CIFAR-100

● Datasets: CIFAR-10, CIFAR-100, TinyImageNet
● Data streams: Four different sequential streams
● Metric: kNN accuracy on the learned representations
● Key baselines: STAM [IJCAI 2021], CaSSLe [CVPR 2022], LUMP [ICLR 2021]
● SCALE outperforms the best state-of-the-art algorithm on all settings with improvements of up 

to 6.43%, 5.23%, 5.86% kNN accuracy on CIFAR-10, CIFAR-100 and TinyImageNet
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Efficient Federated Learning in 
Heterogeneous IoT Networks
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Efficient Federated Learning in Heterogeneous IoT Networks
1. X. Yu et al, “Async-HFL: Efficient and Robust Asynchronous Federated Learning in 

Hierarchical IoT Networks”, IoTDI’23
2. Q. Zhao, X. Yu, T. Rosing, “Attentive Multimodal Learning on Sensor Data using 

Hyperdimensional Computing”, Poster@IPSN’23
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Motivation: Uniqueness of Hierarchical IoT Networks
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FL in IoT NetworksFL in Data Centers

Cloud Server

Local
Data

Sync Federated Learning 
(e.g., FedAvg [1]) ends up 
with significant slow down!!

● Heterogeneous data distribution

● Heterogeneous system capabilities
● Computation + Communication

● Hierarchical network organization (e.g., mesh networks)

● Unexpected stragglers (e.g., device or link failures)
[1] McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial Intelligence 
and Statistics. PMLR, 2017.
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Our Contributions: Async-HFL
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● Async-HFL is designed around three components to balance the data, system 
& network perspectives along with reacting timely to stragglers:

The managing framework of Async-HFL

Async + hierarchical FL algorithm

Gateway-level device selection

Cloud-level device-gateway 
association
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Experimental Results
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• We evaluate Async-HFL on a physical deployment and large-scale simulations
• Physical deployment: 20 Raspberry Pi (RPi) 4 and 20 CPUs
• Large-scale simulations: NYCMesh topology and ns-3 as network simulator
• Datasets: MNIST, FashionMNIST, CIFAR-10, Shakespeare, HAR, HPWREN

• In physical deployment, Async-HFL achieves faster and more robust convergence
• In simulations, Async-HFL converges at least 1.08-1.31x faster in wall-clock time than state-of-

the art asynchronous FL algorithms

Convergence on physical deployment
Time breakup on RPis Time breakup on CPUs
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Works Planned Ahead
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Real-world sensor network 
deployment in the wilderness
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● High Performance Wireless Research and Education 
Network (HPWREN) is an environmental monitoring 
cyberinfrastructure for research, education and public 
safety realms
● Wireless connectivity covers 20K sq. mile area in 

San Diego, Riverside and Imperial counties 
● Numerous sensors with live feeds

● We plan to deploy a sub-sensor network in HPWREN, 
which provides
● A real in-place deployment in noisy wild areas
● An evaluation platform for on-device lifelong, 

federated and multimodal learning methods
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Works Planned Ahead
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How to train under resource 
constraints w/o performance 
loss?
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Revisit: General Intelligence in Complex and 
Dynamic Environments

~20W brain or 100W whole body 

Human

1X 1X 1X
OR

Tons of resources and million of dollars!!

Computer
Segment Everything, ChatGPT, etcHow do you navigate in an 

unfamiliar place?
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Brain-Inspired HD Computing

Dense input 
signal (1M)

High dimensional sparse 
representation (190M)

Dense sensory input is mapped to high-dimensional 
sparse representation on which brain operates 

[Babadi and Sompolinsky 2014]

Benefits of HD computing:
• Easy-to-parallelize and hardware-friendly operations
• Fast single-pass training
• Energy-efficient & robust to noise

Question: Can we utilize these 
benefits to design lightweight 
on-device lifelong learning 
algorithm?
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Conclusion
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● My PhD research targets at contributing a full stack of technologies in all 
three levels

● Enabling ML training pervasively in IoT applications is an active research 
area, which calls for sophisticated designs on single device level, sensor 
network level, and large-scale deployments level.
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