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Edge Computing is Growing Exponentially!

» The global edge computing market size is expected to expand at a compound
annual growth rate (CAGR) of 37.9% from 2023 to 2030

U.S. Edge Computing Market
size, by component, 2020 - 2030 (USD Billion)
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Motivating Problem: de),
Deploying Intelligence for Environmental Monitoring see

o Enabling ML training pervasively in loT applications is an active research
area, which calls for sophisticated designs on single device level,
network level, and large-scale deployment level.
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Roadmap to Intelligence in loT see

o Enabling ML training pervasively in loT applications is an active research
area, which calls for sophisticated designs on single device level,
network level, and large-scale deployment level.
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Roadmap to Intelligence in loT see

o Enabling ML training pervasively in loT applications is an active research
area, which calls for sophisticated designs on single device level,
network level, and large-scale deployment level.
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Roadmap to Intelligence in loT see

o Enabling ML training pervasively in loT applications is an active research
area, which calls for sophisticated designs on single device level,
network level, and large-scale deployment level.
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Thesis Statement see

o My PhD research targets at contributing a full stack of technologies in all
three levels, for enabling pervasive intelligence deployments in loT

[ Large-Scale Deployment |{
"\ in HPWREN '
Y RN T i

Distributed
Learning and
Communication
in Sensor
Networks -

AT
Fe o]

\ ©”
NG

|r§<i\,‘: ﬁ
e
........ ] --/  Sensing, L=
Q\’{ Optimization . ;
e Edge =)
0 5] 10 __cm / 0 d
System Energy Efficiency Lab 7

seelab.ucsd.edu



Distributed | Large-Scale Deployment
Learning and ‘ in HPWREN <
Communication WTE R N
in Sensor L e
Networks - ;

Online Unsupervised Lifelong Learning
1. X.Yu, Y. Guo, S. Gao, T. Rosing, “SCALE: Online Unsupervised Lifelong Learning
without Prior Knowledge”, CLVision’23
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Catastrophic Forgetting [McCloskey 1989] see

o Goal: After deployment, train an ML model on the device

Day 1 ' |:> Prediction: apple
Day 2-99 Prediction: banana
Day 100 Prediction: ?
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Catastrophic Forgetting and Lifelong Learning See

After seeing several o
days of banana...

o Lifelong learning (or continual learning)

e To continually learn over time by acquiring new knowledge as well as consolidating past
experiences

e Key assumption: continuously changing environments
o Key challenge:
o Knowledge interference in NNs
e Limited memory storage
o Previous works rely on prior knowledge (e.g., task boundary) to produce good results

Prediction: ?
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SCALE: Self-Supervised Contrastive Learning  S€€

e We focus on the online, unsupervised lifelong learning problem without prior knowledge

e We propose SCALE to extract and memorize knowledge in an online and unsupervised
manner

Inspired by
SCALE enhances the similarity of
samples in a pseudo-positive set

Time

SCALE uses a self-supervised
forgetting loss to retain
(as knowledge)

3
Pseudo- =
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st

set e BN Best SOA Ak
B SCALE
. . Memory buffer SCALE O CIFAR-10 CIFAR-100 SublumageNet
SCALE employs a uniform online g Augmented S Samples w/ . Samples w/ ___ Positive ___ Negative
memory Update Strategy pair sample same label diff. label pairs pairs
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Experimental Results see

Datasets: CIFAR-10, CIFAR-100, TinylmageNet

Data streams: Four different sequential streams

Metric: kNN accuracy on the learned representations

Key baselines: STAM [I[JCAI 2021], CaSSLe [CVPR 2022], LUMP [ICLR 2021]

SCALE outperforms the best state-of-the-art algorithm on all settings with improvements of up
to 6.43%, 5.23%, 5.86% KNN accuracy on CIFAR-10, CIFAR-100 and TinylmageNet

Bl SimCLR | PNN BN S Bl DER Bl STAM | CaSSLe Bl LUMP SCALE
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Sequential 2 \/\/\/\/ = ‘ //\— 21251 S :’ Pj/\_/‘\/
20 20 1-1 ZETIR. T | | B o
CIFAR-10and "]\ = | %" i; & on 210 \
CIFAR-100 |z —_— ;r"**é
012345678910 ° 012345678910 012345678910 ° 012345678910
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(b) CIFAR-10 seq (b) CIFAR-100 seq
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Efficient Federated Learning in o
Heterogeneous loT Networks see
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Efficient Federated Learning in Heterogeneous loT Networks

1. X.Yu et al, “Async-HFL: Efficient and Robust Asynchronous Federated Learning in
Hierarchical loT Networks”, loTDI'23

2. Q. Zhao, X. Yu, T. Rosing, “Attentive Multimodal Learning on Sensor Data using
Hyperdimensional Computing”, Poster@IPSN’23
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Motivation: Uniqueness of Hierarchical loT Networks See

FL in Data Centers FL in loT Networks
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@ Local data <—— Downlink transmission = <+—— Uplink transmission

Heterogeneous data distribution

: : T % Downlink model sync 3 Uplink model update
» Hierarchical network organization (e.g., mesh networks)

e Heterogeneous system capabilities >

Sync Federated Learning
(e.g., FedAvg [1]) ends up
with significant slow down!!

o Computation + Communication
» Unexpected stragglers (e.g., device or link failures)

System Energy Efficiency Lab [1] McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial Intelligence 14
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Our Contributions: Async-HFL
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see

e Async-HFL is designed around three components to balance the data, system
& network perspectives along with reacting timely to stragglers:

Async + hierarchical FL algorithm

Gateway-level device selection

Cloud-level device-gateway
association

System Energy Efficiency Lab
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Experimental Results see

* We evaluate Async-HFL on a physical deployment and large-scale simulations
- Physical deployment: 20 Raspberry Pi (RPi) 4 and 20 CPUs
- Large-scale simulations: NYCMesh topology and ns-3 as network simulator
- Datasets: MNIST, FashionMNIST, CIFAR-10, Shakespeare, HAR, HPWREN
* In physical deployment, Async-HFL achieves faster and more robust convergence

* In simulations, Async-HFL converges at least 1.08-1.31x faster in wall-clock time than state-of-
the art asynchronous FL algorithms
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Works Planned Ahead

Distributed
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Large-Scale Deployment

e High Performance Wireless Research and Education
Network (HPWREN) is an environmental monitoring
cyberinfrastructure for research, education and public
safety realms

e Wireless connectivity covers 20K sq. mile area in
San Diego, Riverside and Imperial counties
e Numerous sensors with live feeds

which provides " Motion
e A real in-place deployment in noisy wild areas detect . .
e An evaluation platform for on-device lifelong, cameras Wildfire tracking cams
federated and multimodal learning methods Acoustic sensors
Environmental |

sensors & cams

<Pk A
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Works Planned Ahead

Distributed | Large-Scale Deployment |,
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How to train under resource
constraints w/o performance
loss?
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Revisit: General Intelligence in Complex and

Dynamic Environments
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How do you navigate in an
unfamiliar place?

~
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Brain-Inspired HD Computing
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Dense sensory input is mapped to high-dimensional
sparse representation on which brain operates
[Babadi and Sompolinsky 2014]
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Benefits of HD computing:

- Easy-to-parallelize and hardware-friendly operations

- Fast single-pass training

Energy-efficient & robust to noise
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Question: Can we utilize these
benefits to design lightweight

on-device lifelong learning
algorithm?
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Conclusion see

o Enabling ML training pervasively in loT applications is an active research
area, which calls for sophisticated designs on single device level,
network level, and large-scale deployments level.
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