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Deploy Edge Intelligence: Current Pipeline
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● Current pipelines of designing and deploying edge intelligence include
three steps

Collect a dataset Train a ML model
offline

Deploy AI-enabled
sensors into the wild

However, this pipeline usually does not work well in practice due 
to data distribution mismatch!
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Lifelong (or Continual) Learning on the Device
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● No prior data collection
● No offline training
● The edge device learns and adapts to a continuously changing 

environment from its past data
● This learning process continues throughout the lifetime of the edge 

device
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Challenges of Lifelong Learning
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● Unique challenges in deploying lifelong edge intelligence
● Catastrophic forgetting [McCloskey 1989]
● Lack of supervision in field
● Limited on-board resources
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● Unsupervised lifelong learning based on NNs
● STAM [IJCAI’21]: progressive memory architecture
● CaSSLe [CVPR’22]: past knowledge distillation
● LUMP [ICLR’22]: memory replay

● Neurally-inspired lifelong learning algorithms
● FlyModel [Shen 2021], SDMLP [ICLR’23]: 

sparse coding and associative memory

Prior Works

5

(+) Various techniques to mitigate catastrophic forgetting
(-) Intensive resources usage during training

Figures from SDMLP [ICLR’23]

(+) Lightweight training
(-) Need label supervision

Figures from LUMP [ICLR’22]
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(+) Various techniques to mitigate catastrophic forgetting
(-) Intensive resources usage during training

Figures from SDMLP [ICLR’23]

(+) Lightweight training
(-) Need label supervision

Figures from LUMP [ICLR’22]

Is there any alternative strategies for designing a lightweight and 
unsupervised lifelong learning algorithm?
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Brain-Inspired Hyperdimensional Computing (HDC)

Dense input 
signal (1M)

High dimensional sparse 
representation (190M)

Dense sensory input is mapped to high-dimensional 
sparse representation on which brain operates 

[Babadi and Sompolinsky 2014]

Benefits of HD computing:
• Easy-to-parallelize operations à energy-efficient
• Fast single-pass training
• Connections with biological lifelong learning in fruit flies [Shen 2021]
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Our Contribution: LifeHD
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● We design LifeHD, the first end-to-end
system for on-device unsupervised lifelong
learning using Hyperdimensional Computing

● We propose two variants of LifeHD
● LifeHDsemi deals with scarce labeled inputs
● LifeHDa deals with power constraints

● We implement LifeHD on off-the-shelf edge
devices and conduct extensive experiments
across three typical IoT applications
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Overview of LifeHD
● Streaming data input

● Class incremental streams with potential distribution drift
● Encoding projects dense sensor signals into high-dimensional vectors
● Two-tier associative memory design for mitigating catastrophic forgetting
● Three key components in LifeHD’s working memory

● (1) Novelty detection, (2) Cluster HV update, (3) Cluster HV Merge
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LifeHD Encoding
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● Encoding is the first and the most important step in HDC
● We use the Spatiotemporal HDC encoding [Nature Electronics’21]
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HDnn Encoding

● We use HDnn encoding [GLVLSI’22] for more complex data such as sound 
and images
● A pretrained and frozen NN for feature extraction

11
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Intuition of LifeHD’s Working Memory Designs

● LifeHD's designs draw inspiration from human cognitive processes
● Question: How does a baby continually improve knowledge without supervision?

12

Novelty Detection Cluster Update Cluster Merge
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Novelty Detection and Cluster HV Update

● Novelty Detection
● If the new incoming HV " # is very dissimilar 

from all existing cluster HVs $!

● Online Cluster HV Update
● Update the assigned cluster HV $!
● Update params in a moving average manner
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Cluster HV Merge

● Analyze the global similarity relationship
between long-term cluster HVs

● Group “similar” cluster HVs into a “coarser” one 
if appropriate

● Update the working memory

14

Step 1: Build a similarity graph
Step 2: Compute the 
eigendecomposition of the 
similarity matrix
Step 3: Group the cluster HVs 
by running K-Means on 
eigenvectors
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Cluster HV Merge

● Analyze the global similarity relationship
between long-term cluster HVs

● Group “similar” cluster HVs into a “coarser” one 
if appropriate

● Update the working memory
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Cluster HV 
merge

Ablation study of LifeHD on MHEALTH

Intuitive 
Visualization
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Experimental Setup
● We implement LifeHD in Python and PyTorch on

● Raspberry Pi Zero 2W
● Raspberry Pi 4B
● NVIDIA Jetson TX2 (w/ GPU)

● We test on three typical IoT applications
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[1] Karol J Piczak. ESC: Dataset for environmental sound classification. 2015
[2] Garcia Rafael Banos, et al. MHEALTH Dataset. UCI Machine Learning Repository. 2014
[3] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009
[4] Md Mohaimenuzzaman et al. Environmental Sound Classification on the Edge: A Pipeline for Deep Acoustic Networks on Extremely Resource-
Constrained Devices. Pattern Recognition 133 (2023), 109025. 
[5] Mark Sandler et al. Mobilenetv2: Inverted residuals and linear bottlenecks. CVPR’18. 

Dataset Application Classes 
(Balanced?)

Total 
Samples

Pretrained Neural 
Network in HDnn

MHEALTH [1] Human activity recognition 12 (N) 9K /
ESC-50 [2] Sound recognition 50 (Y) 2K ACDNet [4]

CIFAR-100 [3] Image classification 20 (Y) 60K MobileNet [5]
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Experimental Setup (Cont.)
● Baselines

● We compare with SOTA neural network-based unsupervised lifelong learning
● STAM [IJCAI’21]: progressive memory architecture
● CaSSLe [CVPR’22]: past knowledge distillation
● LUMP [ICLR’22]: memory replay

● We also compare with the fully Supervised HDC baseline

● Metrics
● Unsupervised Clustering Accuracy (ACC)

● ACC computes the accuracy under the “best” mapping between clusters and labels
● Training time per batch
● Energy consumption per batch
● Memory usage

17

On all platforms
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LifeHD vs. SOTA Neural Network-based Baselines

● All NN-based baselines start from higher ACC but experience forgetting
● LifeHD achieves up to 9.4%, 74.8% and 11.8% accuracy increase on 

MHEALTH, ESC-50 and CIFAR-100 compared to NN-based baselines

18
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LifeHD vs. Supervised HDC
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The gap of final ACCs: LifeHD vs. Supervised HDC

● LifeHD approaches the ACC of supervised HDC with a gap of 15%, 3% and 
6% on MHEALTH, ESC-50 and CIFAR-100

Method MHEALTH ESC-50 CIFAR-100
LifeHD 0.75 0.92 0.2

Supervised HDC 0.9 0.95 0.26
Gap -0.15 -0.03 -0.06

● Visualization of a valid learning outcome
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Training Latency and Energy

● LifeHD vs. NN-based baselines
● Up to 23.7x, 36.5x and 22.1x faster to train on RPi Zero, RPi 4 and Jetson TX2
● Up to 22.5x, 34.3x and 20.8x more energy efficient on RPi Zero, RPi 4 and Jetson TX2

20
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Conclusion

● On-device lifelong learning should be the future of edge intelligence
● Prior works require label supervision or intensive resources to train
● We design and implement LifeHD, the first end-to-end system for on-device 

unsupervised lifelong learning using Hyperdimensional Computing
● We further propose two variants of LifeHD to deal with practical scenarios

● LifeHD improves ACC by up to 74.8% compared to the SOTA NN-based 
unsupervised lifelong learning baselines with as much as 34.3x better energy 
efficiency on Raspberry Pi 4B

● Our code is available at https://github.com/Orienfish/LifeHD

21

https://github.com/Orienfish/LifeHD
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