Lifelong Intelligence Beyond the Edge
using Hyperdimensional Computing

Xiaofan Yu!, Anthony Thomas', Ivannia Gomez Moreno?, Louis Gutierrez!, Q:
Tajana Simuni¢ Rosing! S e e

I 'University of California San Diego

2 CETYS University, Campus Tijuana m o
(in tel)

[PSN 2024

Semiconductor
Research
Corporation

"
3 -
\

System Energy Efficiency Lab
seelab.ucsd.edu



Deploy Edge Intelligence: Current Pipeline see

o Current pipelines of designing and deploying edge intelligence include

three steps
g E Aty

Collect a dataset Train a ML model Deploy Al-enabled
offline sensors into the wild

However, this pipeline usually does not work well in practice due

to data distribution mismatch!
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Lifelong (or Continual) Learning on the Device see

o No prior data collection
» No offline training

o The edge device learns and adapts to a continuously changing
environment from its past data

» This learning process continues throughout the lifetime of the edge
device
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Challenges of Lifelong Learning

o Unique challenges in deploying lifelong edge intelligence
» Catastrophic forgetting [McCloskey 1989]

o Lack of supervision in field
o Limited on-board resources

—— sequential

Unsupervised clustering
accuracy (ACC)
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Streaming data without supervision

Training latency per batch
Image size = 32x32x3 (RGB)
Batch size = 32 samples

Raspberry Pi 4B 17 .4 sec
Jetson TX2 4.5 sec
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Prior Works see
« Unsupervised lifelong learning based on NNs . oy R
« STAM [IJCAI'21]: progressive memory architecture J*ﬁj ﬁj'_l
. CaSSLe [CVPR’22]: past knowledge distillation 2 PR
« LUMP [ICLR’22]: memory replay e W & o

(+) Various techniques to mitigate catastrophic forgetting
(-) Intensive resources usage during training

Figures from LUMP [ICLR’22]

Read patterns from neurons near query

» Neurally-inspired lifelong learning algorithms

» FlyModel [Shen 2021], SDMLP [ICLR’23]: o
sparse coding and associative memory O

(+) Lightweight training
(-) Need label supervision
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Neuron view:

O Query reads stored patterns.
I C) Blue pattern is read the most.
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Figures from SDMLP [ICLR’23]




see
Unsupervised lifelong learning based on NNs g on (T U :
STAM [IJCAI'21]: progressive memory architecture | 2
CaSSLe [CVPR22]: past knowledge distillation 2 -
LUMP [ICLR’22]: memory replay

Is there any alternative strategies for designing a

lifelong learning algorithm?

FlyModel [Shen 2021], SDMLP [ICLR23]: o ©° 4 Queryreadsstored s
sparse coding and associative memory O 0o o
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Brain-Inspired Hyperdimensional Computing (HDC) see
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Dense sensory input is mapped to high-dimensional High dimensional sparse
representation (190M)

sparse representation on which brain operates
[Babadi and Sompolinsky 2014]

Training
1 Cat hypervector
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Benefits of HD computing:
- Easy-to-parallelize operations - energy-efficient
- Fast single-pass training

System Energy Efficiency Lab - Connections with biological lifelong learning in fruit flies [Shen 2021]
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Our Contribution: LifeHD see
o We design LifeHD, the first end-to-end workingomary "7 Long Torm Wemery
system for on-device unsupervised lifelong sy AN ) R [
learning using Hyperdimensional Computing Tenre = ) ' % C°ajf§;‘d‘i|§|é|-_ilé-f%5
e g .cm; 7l Q@\{\@«» Igg
« We propose two variants of LifeHD ¢> ) o sy 1 ”j’
e )|

o LifeHD, deals with scarce labeled inputs
o LifeHD, deals with power constraints

o We implement LifeHD on off-the-shelf edge
devices and conduct extensive experiments (
across three typical loT applications

i
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Overview of LifeHD see

o Streaming data input

« Class incremental streams with potential distribution drift
» Encoding projects dense sensor signals into high-dimensional vectors
o Two-tier associative memory design for mitigating catastrophic forgetting
o Three key components in LifeHD’s working memory

« (1) Novelty detection, (2) Cluster HV update, (3) Cluster HV Merge

Working Memo _===="N ~-"""" " Long-Term Memory

4 Streaming Y\l o @ y "5?&"; I{'Z aus_te‘r_HV_s "\P;nso" tote !_zzns_oli&t&i ~

Training Data

\. A

Cluster HV Merge
P(Xq)
Testing
= S

System Ene |_—
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LifeHD Encoding see

» Encoding is the first and the most important step in HDC
o We use the Spatiotemporal HDC encoding [Nature Electronics’21]

Generating Sensor ID HVs Encoding Time-Series Sensor Data
Randomly generate d HVs

— ID HV, E@
1 LevelHV,

or

Qth Level

Max @|+1.-1 1+1-1... | _6_ w(p()()
Analog / .

Generating Level HVs

5]

N I I DAV E@— ¢ (%)
sensore —— 1] Random bits flip = Level HY, t=T
reading —>[-1+1+1-1-1... ]
{] Random bits flip =1

Min S [1-1+1-1+1.. |
1st Level

d sensors p*: Permutation ¢ (x): Encoded HV
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HDnn Encoding see

o We use HDnn encoding [GLVLSI'22] for more complex data such as sound
and images

« A pretrained and frozen NN for feature extraction

é ) Associative Memory
__Train Data D » E Class Hypervectors :
oy » =
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Intuition of LifeHD’s Working Memory Designs see

o LifeHD's designs draw inspiration from human cognitive processes
o Question: How does a baby continually improve knowledge without supervision?

Novelty Detection Cluster Update Cluster Merge

System Energy Efficiency Lab 12
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Novelty Detection and Cluster HV Update see

i Working Memory
» Novelty Detection = sel = = = ===

H(X) ( Cluster HVs
o If the new incoming HV ¢(x) is very dissimilar
from all existing cluster HVs m;

If cos(p(X), m;) < u; — y8;, then flag novel

o Online Cluster HV Update

- Update the assigned cluster HV m; ¢(x) Incoming encoded HV
- Update params in a moving average manner m;  The jth stored cluster HV
mj < mj ® §(X) u1j,6;  Mean and standard
difference of similarity
pj — (1= a)pj+acos(¢(X), mj) threshold
6j — (1—-a)dj +af cos(¢(X), mj) — pjl y,a hyperparameters
System Energy Efficiency Lab 13
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Cluster HV Merge see
. . . . Working Memory Long-Term Memory
o Analyze the global similarity relationship @ —======7 [ === ——=
( Cluster HVs Consolidate f Consolidated
between long-term cluster HVs l —————yf _Clstertvs _,
(1P . 7 . (11 tH] I I itj > itth I I
o Group “similar” cluster HVs into a “coarser” one | l 1 |
. . ) S ———— N\ o e e
if appropriate Tincate” ‘M 2
« Update the working memory luster HV Merge
Long-Term Memory: [ Adjacency Matrix: A Merged Cluster HVs  Step 1: Build a similarity graph
 “Consolidated ™ : .
Cluster HVs | Build Similarit - Step 2: Compute the
', (O ! y Find Spectral eigendecomposition of the
'l | Graph Cut o, )
L T | | similarity matrix
LTI T] >
:zzl SEREEREN] Step 3: Group the cluster HVs
Is I by running K-Means on

System Energy Efficiency Lab
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Cluster HV Merge see
.. . . . Working Memory Long-Term Memory
» Analyze the global similarity relationship [~ Gumeritis 1| o1 Consolitad
between long-term cluster HVs | il _ClustertVs _,
TP ” . “ ” | | L Wen |l I
o Group “similar” cluster HVs into a “coarser” one ! 1 |
if appropriat A~ Fupeato N -
pp Op late TUpdate Q@\{\e
« Update the working memory LEE AT IEEE
0 T Cluster HV
§ 0.61 5 w/o Merging
Intuitive .~ = —— LifeHD
Visualization o e VR
1 3 5 7 9 = 1 3 5 7 9
Sample Number (103) Sample Number (103)
Ablation study of LifeHD on MHEALTH
System Energy Efficiency Lab
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Experimental Setup see

o We implement LifeHD in Python and PyTorch on
» Raspberry Pi Zero 2W
- Raspberry Pi 4B Hioki 3334
. NVIDIA Jetson TX2 (w/ GPU) Tl

o We test on three typical loT applications

Dataset Application Classes Total Pretrained Neural
(Balanced?) Samples Network in HDnn
MHEALTH [1] Human activity recognition 12 (N)

ESC-50 [2] Sound recognition 50 (Y) 2K ACDNet [4]
CIFAR-100 [3] Image classification 20 (Y) 60K MobileNet [5]

[1] Karol J Piczak. ESC: Dataset for environmental sound classification. 2015
[2] Garcia Rafael Banos, et al. MHEALTH Dataset. UCI Machine Learning Repository. 2014
[3] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009

[4] Md Mohaimenuzzaman et al. Environmental Sound Classification on the Edge: A Pipeline for Deep Acoustic Networks on Extremely Resource-
System Energy Efficiency Lab  copstrained Devices. pattern Recognition 133 (2023), 109025. 16

seelab.ucsd.edu [5] Mark Sandler et al. Mobilenetv2: Inverted residuals and linear bottlenecks. CVPR’18.
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Experimental Setup (Cont.) see

o Baselines

« We compare with SOTA neural network-based unsupervised lifelong learning
« STAM [IJCAI'21]: progressive memory architecture
« CaSSLe [CVPR’22]: past knowledge distillation
o LUMP [ICLR’22]: memory replay

« We also compare with the fully Supervised HDC baseline

o Metrics
« Unsupervised Clustering Accuracy (ACC)
« ACC computes the accuracy under the “best” mapping between clusters and labels
« Training time per batch =
» Energy consumption per batch

« Memory usage

System Energy Efficiency Lab — 17
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LifeHD vs. SOTA Neural Network-based Baselines see

CaSSlLe [14] BN LUMP [13] BN STAM [54] Bl Finetune B LifeHD
MHEALTH ESC-50 CIFAR-100

A /_ 075_ /_/v\/_-
O
g 06 0.50
0.5' 0.25_

1 3 5 71 9 5 10 15 2 4
Sample Number (103) Sample Number (107?) Sample Number (10%)

0.15 1

0.10-
7 , —

o All NN-based baselines start from higher ACC but experience forgetting

o LifeHD achieves up to 9.4%, 74.8% and 11.8% accuracy increase on
MHEALTH, ESC-50 and CIFAR-100 compared to NN-based baselines

System Energy Efficiency Lab 18
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LifeHD vs. Supervised HDC see

The gap of final ACCs: LifeHD vs. Supervised HDC

| Method | MHEALTH ESC-50 | CIFAR-100

LifeHD 0.75 0.92
Supervised HDC 0.9 0.95 0.26
Gap -0.15 -0.03 -0.06

« LifeHD approaches the ACC of supervised HDC with a gap of 15%, 3% and
6% on MHEALTH, ESC-50 and CIFAR-100

« Visualization of a valid learning outcome
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System Energy Efficiency | Predicted Clusters by LifeHD
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Training Latency and Energy
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see

B4 casSLe [14]
MHEALTH

N LumP[13]
ESC-50

Y Finetine

yoe STAM [54]
CIFAR-100

100+

50 1

0.

(b)

ESC-50

20 1
10 -

Latency on RPi 4B

CIFAR-100

MHEALTH
100+
) 8 40;
> >
o %}
c o
g 101 £ 207
© ©
0 .
(a) Latency on RPi Zero
MHEALTH MHEALTH
3100 S
§ §~ 100
g e
“ 10- 93 =
10
(d) Energy on RPi Zero

500 1

1001

5
(e) Energy on RPi 4B

200 1
100 1

o LifeHD vs. NN-based baselines

« Upto 23.7x, 36.5x and 22.1x faster to train on RPi Zero, RPi 4 and Jetson TX2
« Up to 22.5x, 34.3x and 20.8x more energy efficient on RPi Zero, RPi 4 and Jetson TX2
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Conclusion see

» On-device lifelong learning should be the future of edge intelligence
» Prior works require label supervision or intensive resources to train

o We design and implement LifeHD, the first end-to-end system for on-device
unsupervised lifelong learning using Hyperdimensional Computing

o We further propose two variants of LifeHD to deal with practical scenarios

o LifeHD improves ACC by up to 74.8% compared to the SOTA NN-based
unsupervised lifelong learning baselines with as much as 34.3x better energy
efficiency on Raspberry Pi 4B

o Our code is available at https://github.com/Orienfish/LifeHD

System Energy Efficiency Lab 21
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