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Abstract

Hyperdimensional computing (HDC) is an approach for solving cognitive informa-
tion processing tasks using data represented as high-dimensional, low-precision,
vectors. The technique has a rigorous mathematical backing, and is easy to im-
plement in energy-efficient and highly parallelizable hardware like FPGAs and
“in-memory” architectures. The success of HDC based machine learning approaches
is heavily dependent on the mapping from raw data to high-dimensional space. In
this work, we propose a new method for constructing this mapping that is based on
the Nyström method from the literature on kernel approximation. Our approach
provides a simple recipe to turn any user-defined positive-semidefinite similarity
function into an equivalent mapping in HDC. There is a vast literature on the design
of such functions for learning problems, and our approach provides a mechanism
to import them into the HDC setting, potentially expanding the types of problems
that can be tackled using HDC. An empirical comparison of our approach against
existing HDC encoding methods on a variety of classification tasks shows that we
can achieve 10%-37% and 3%-18% better classification accuracy on graph and
string datasets respectively.

1 Introduction

Biological brains “compute” using representations of data that are intrinsically fault tolerant, amenable
to highly-parallel circuitry, and expose complex structure in the environment in a way that is easy
to learn from [10]. Motivated by these desirable qualities, hyperdimensional computing (HDC)
builds on theories of representation from cognitive science [16, 33] in an effort to develop a new
approach to designing hardware and algorithms for information processing tasks [16]. In HDC, all
computation is performed using high-dimensional, low-precision, vector representations of data.
These representations can be manipulated using simple, element-wise operators, so as to implement
learning or other information processing tasks.

In contrast to deep learning models, training HDC based models can typically be done in a single
pass over the training data [49] and typically do not require back-propagation. The operations
used in HDC are lightweight and highly parallelizable, making them suitable for implementation
on low-energy and highly-parallel hardware platforms, which makes it an attractive alternative for
implementing learning in resource constrained settings. As a result, HDC has gained significant
interest in recent years, especially in Internet of Things (IoT) [19, 51, 29]; and in the computer
hardware community [6, 17, 20] such as FPGAs [38], GPUs [18], ASICs [50] and in-memory
computing [6, 48].

The first stage in any HDC task is encoding, which maps data from its ambient representation
x ∈ X , into a representation ϕ(x) that lives in some high-dimensional inner-product spaceH [44].
Architectures for HDC supply a pair of operators for addition and multiplication (called ‘bundling”
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Figure 1: Overview of HDC training and inference for classification tasks.

and “binding” in the HDC literature), which can be used to build representations of complex structures
from simple building blocks or to implement tasks like learning. For instance, a popular approach
classification using HDC is to represent each class as a bundle (sum) of the encodings of its training
data, called a “prototype,” whereupon inference can be performed by finding the closest prototype to
a query.

The crucial assumption underlying the success of this technique is that “similar” points in X are
mapped to “similar” regions of H. In practice, this desideratum typically means that dot-products
in H should be reflective of some salient notion of similarity on X . In HDC, one typically builds
representations incrementally, by bundling and binding together the embeddings of simpler atoms.
For instance, to embed a feature vector, one might bundle together embeddings of the individual
features. In this work, we observe that one can also go in the opposite direction: starting from a known
similarity function of interest, it is possible to generate an equivalent—up to some approximation
factor—encoding function.

The advantage of this “top down” approach is that there is a vast literature on designing good similarity
functions for different kinds of learning problems. In machine learning, similarity functions that
work by computing inner-products between high-dimensional embeddings of data are called kernel
functions, and are the basis of kernel methods, a vast area of research in theoretical and applied
ML [40, 42]. This literature has devoted substantial attention to the problem of designing good
similarity functions, which are also potentially applicable to the kinds of problems encountered in
HDC. In this work, we study an approach, based on the Nyström method from the literature on kernel
approximation [46], which can take a user defined kernel and generate an low-precision, randomized
embedding, suitable for use in the kinds of learning algorithms employed in HDC. In a nutshell, the
contributions of this paper are as follows:

• We propose a new way to generate embeddings for HDC which can turn any user-defined
positive-semidefinite similarity function into an equivalent embedding.

• We analyze the similarity-preserving properties of our encoding method formally.

• We evaluate our encoding method empirically across a variety of tasks, including string,
graph, and image classification. The results show that our method achieves 10%-37% and
3%-18% better classification accuracy on graph and string classification, respectively.

From a practical standpoint, our work has the potential to increase performance on HDC tasks like
classification and regression by allowing practitioners to access the large repertoire of kernels that
have been designed for these tasks.

2 Background

2.1 Learning with HDC

In this work, we focus on using HDC to solve classification problems, which is a common practical
application of the technique [12, 35, 26]. Fig 1 demonstrates a typical HDC learning workflow for
classification [28, 31, 27]. Let D = {(x1, y1), ..., (xn, yn)} be a set of training data, where xi ∈ X
is an input, and yi ∈ {1, ..., c} is a class label. The first step is to embed the training data into a
d-dimensional inner-product spaceH under a map (called the encoding function) ϕ : X → H. The
“training” step then associates each class with a vector inH, which is typically formed by summing
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(bundling) the training data corresponding to a particular class. That is, one represents class j as:

θj =

n∑
i=1

αijϕ(xi),

where αi = 1(yi = j). In practice, one sometimes quantizes θj in some fashion to reduce precision,
which is beneficial in some hardware settings. It is also common to fine tune the θj’s by running the
Perceptron algorithm [37]. The label of a query x is predicted by via:

ŷ = argmax
j∈{1,...,c}

⟨ϕ(x), θj⟩,

where the operands are sometimes normalized in some fashion if appropriate. In any event, this
procedure can be interpreted as associating each class to a linear function inH.

A number of HDC encoding methods have been proposed to encode various types of data. For exam-
ple, string or text data can be encoded into hypervectors through theN -gram encoding method [15, 13].
Concretely, let S = (a1a2a3...aN ) be a string of N characters drawn from some alphabet A (say,
the English-language alphabet or {A,T,G,C}). To encode S, we start by assigning each a ∈ A an
embedding ϕ(a) by sampling uniformly at random from H, after which, one might represent S as
a1 ◦ ρ(a2) ◦ ρ2(a3) ◦ · · · ◦ ρN−1(aN ) where ◦ can be either element-wise addition [13] or multipli-
cation [15] and ρ is a permutation operation of the vector coordinates, ρn means same permutation
applied n times in sequence. If ◦ is multiplication, the way N -grams representations are constructed
makes them almost mutually orthogonal inH in the sense that E[ϕ(S) · ϕ(S′)] = 1(S = S′). The
deviation from this expectation can be controlled using concentration arguments [44].

Finally, longer strings that contain multiple N -grams can be treated as a bundle of N -gram vectors.
This string encoding scheme can be viewed as a “compressed” version of the bag-of-words model [8]
in the sense that all N -gram vectors are superimposed into one representation. Intuitively, the
inner-product between two such encoded strings can measure how “similar” two strings are, as that
value would be large if two strings shared many common N -grams, and vice versa. For general
feature vectors (or simple images), techniques based on random projection are popular [28, 19].
These methods tend to capture fairly simple notions of similarity based on the L1/L2 or angular
distance. However, the design of good encoding functions for complex forms of data like graphs and
time-series remains an important area of research. For inspiration, we turn to another area of machine
learning that has thought extensively about how to measure similarities between data points using
high-dimensional vectors.

2.2 Kernel Methods

Kernel methods are a wide ranging area of research in statistics and machine learning that shares many
similarities with HDC [40, 25, 11]. Just like in HDC, kernel methods work by embedding data into a
high-dimensional space wherein similarities are measured using inner-products. That is to say, kernel
methods measure similarities between data points x, x′ ∈ X via a functionK(x, x′) = ⟨ψ(x), ψ(x′)⟩,
called a “kernel function,” where ψ : X → H is an embedding into an inner-product space. For
many types of kernel functions used in practice, it is possible to compute K(x, x′) directly on
the ambient representation of the data without materializing the embeddings. Notable examples
include the Gaussian kernel K(x, x′) ∝ exp(−∥x − x′∥22), and the p-th order polynomial kernel
K(x, x′) = (1 + xTx′)p. Both of these kernels can be evaluated in closed form on the ambient
representation of the data, allowing kernel methods to implicitly compute a similarity based on a
high-dimensional embedding. HDC, however, always explicitly materializes the embeddings, hence
the need for an encoding function ϕ.

Kernel based learning methods make predictions using functions taking the form f(x) =∑n
i=1 aik(xi, x), where x1, ..., xn are training data points, and α1, ..., αn are weights that are learned

by a training algorithm. Noting that f(x) =
∑n

i=1 αik(x, xi) = ψ(x) · θ where θ =
∑n

i=1 aiψ(xi),
in this way we can interpret such functions as linear models in the embedding space associated with
the kernel, much like in the previous paragraph on HDC. One significant difference between kernel
methods and HDC, is that in the former the embeddings are implicit, and similarities are evaluated
using the kernel function. This property is appealing because it allows one to efficiently work with
infinite-dimensional embeddings, which can have desirable properties for learning [43].
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2.3 Kernel methods and HDC

There is a large theoretical and applied literature on kernel methods that has designed kernels (e.g.
similarity functions) that are applicable to many settings of practical interest [30, 24, 41, 40]. To
give a concrete example of how the literature on kernel methods can offer insights for the HDC
community, we consider the method for encoding graphs presented in [31]. GraphHD [31] proposes
to first use the PageRank centrality metric [4] to rank the “importance” of each node and assign a
hypervector to each node based on its importance, in the sense that nodes in different graphs with the
same ranking will be assigned the same hypervector. Edges are represented by multiplying (binding)
of two node hypervectors, and an entire graph can be represented as the summation (bundle) of edge
hypervectors. This encoding method is limited in the sense that only topological information of
graphs is preserved during encoding, while other crucial information such as node labels or node
attributes (where each node in the graph is associated with either a feature vector or a label) is not
being utilized. Such limitations, however, have been addressed with kernel methods. For example,
the propagation kernel [30] is able to work with graphs that have node labels or node attributes.
The propagation kernel uses random walk techniques to measure not only the structural difference
between graphs but also taking node labels or node attributes into consideration as well, therefore is
capable of capturing a potentially richer notion of similarity.

On time-series data, the permutation operation is used in a similar fashion to encode the temporal
order [2]. However, such encoding method can fail if the events between two time-series do not align
exactly. Since each time step is associated with a unique permutation during encoding, if events
in time-series are shifted, even by a small amount, existing HDC encoding methods will map two
time-series to nearly orthogonal vectors. In practice, however, if two time-series data reflect the
same underlying activity or nature, one would want that similarity to be preserved after the encoding,
even if some event mis-alignment may exist. Here again, the literature on kernel methods suggests a
solution: the dynamic-time-warping kernel [7] can handle time-series sequences with dis-alignment
or with time-stretching/compression. In this work, our goal is to devise a procedure that can translate
any kernel into an equivalent HDC encoding, thereby allowing practitioners to exploit the wealth of
kernel functions that have been designed for practical problems while continuing to reap the benefits
of computing with distributed representations.

2.4 Related Work

The connection between HDC and kernel approximation is generally well known [44, 32, 49], mostly
through the lens of random Fourier features (RFF) [36]. RFF is a sampling based scheme that
generates a vector of features ϕ(x) ∈ Rd with the property that ϕ(x) · ϕ(x′) ≈ K(x, x′), where K is
a shift-invariant kernel (e.g. the Gaussian kernel, polynomial kernel). Closely related methods arise
in the HDC literature under the names “nonlinear-encoding” [27, 14] and “fractional power encoding”
[32]. Using RFF in the context of HDC means that inner-products in HD space approximate some
shift-invariant kernel, usually the Gaussian kernel. However, a limitation of RFF is that it can only
work with shift-invariant kernels on a Euclidean space, which many useful kernels do not satisfy (i.e.
kernels on graphs and strings). Our method provides a way to generate approximations for a larger
class of kernels that do not need to be translation invariant.

3 HDC Encoding using the Nyström Approximation

In this section we describe our new encoding algorithm for HDC using Nyström method for kernel
approximation. We also show formally that the inner-product between encoded samples preserves
normalized kernel values.

Formally, given the dataset D and a suitable kernel function K, the goal is to generate an encoding
function ϕ : X → H such that ⟨ϕ(x), ϕ(x′)⟩ ≈ K(x, x′), while ensuring that the representation inH
remains high-dimensional, which is an important property making HDC representation noise-robust
and hardware efficient [44, 21]. Having embeddings that approximate a particular kernel is important
as it enables HDC learning algorithms to exploit more useful similarities induced by the kernel.
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3.1 Nyström method

Fitting kernel machines commonly requires storing all pairwise evaluations of the kernel function
in a large matrix K defined element-wise by Kij = K(xi, xj), problematic when n is large. The
Nyström method is a low-rank matrix approximation technique widely employed to speed up kernel
machines by avoiding the need to evaluate the entire kernel matrix [46, 5, 22]. In a way, Nyström
method is similar to RFF since they are both sampling based schemes and can be used to approximate
kernel functions. The key difference between RFF and Nyström method is that Nyström method can
work with a larger class of kernels than RFF, many of which are useful for applications involving
discrete structures such as strings, graphs and more.

Intuitively, the Nyström method works by sub-sampling the kernel matrix and reconstructing the full
kernel matrix from the sampled one. This is possible because the kernel matrix is typically close
to low-rank in practice. Concretely, suppose we have a dataset D = {x1, x2, ..., xn}, from which
we sample a set of landmarks Z = {z1, ..., zs} uniformly at random, where s≪ n. Let G ∈ Rn×n

be the full kernel matrix defined element-wise by Gij = K(xi, xj), and let HZ ∈ Rs×s be the
sub-sampled kernel matrix defined element-wise by (HZ)ij = K(zi, zj). The Nyström method
yields the approximation [5]:

Ĝ = CH+
ZC

T ≈ G,

Where C is an n× s matrix such that Cij = K(xi, zj) for some kernel function K, and H+
Z denotes

the pseudo-inverse of HZ . That is, let Q and Λ be the eigenvectors and eigenvalues of HZ then:

H+
Z = QΛ−1QT (symmetric eigen-decomposition)

To further decompose Eq. (3.1), let C(i) denotes ith row of C in a column vector, we can have
embedding for each data point such that:

Ĝij ≈ ϕnys(xi)Tϕnys(xj) =
(
Λ− 1

2QTC(i)
)T (

Λ− 1
2QTC(j)

)
(1)

In general, the embeddings generated by Nyström method do not need to be high-dimensional to
have the similarity preserving property, however, they may lack other desiderata of HDC like noise
robustness, and low-precision. Our method rectifies this issue by composing the features extracted
using the Nyström method with another encoding technique that preserves angular similarities which
we discuss in detail in section 3.2.

Due to the data-dependent nature of the Nyström method, the quality of its approximation and
computational complexity is highly dependent on the quality and size of Z . As an initial step, in this
paper we simply use uniform sampling without replacement as our sampling strategy. However, more
sophisticated strategies such as ensemble and adaptive sampling [22] for constructing landmark sets
can potentially yield better performance, and it would be of interest to explore these in future work.

3.2 Encoding Process

To achieve the aforementioned goals (generate HDC embeddings such that their inner-products
approximate some useful kernel) we compose random projection with Nyström method. Alg. 1
details the generating process of Nyström random projection. After which, the encoding of a data
point can be done through Alg. 2.

Algorithm 1 Generate Nyström Random Projection

Require: kernel K over X , dataset D, number of landmarks s > 0, HDC dimension d > 0
Z ← uniform sampling of s data points from D /*Landmarks*/
(HZ)ij = K(zi, zj) ∀ 0 ≤ i, j ≤ s /*Partial kernel Matrix over landmarks*/
QΛQT = HZ /*Symmetric Eigen-decomposition*/
Prp = [w1, w1, · · · , wd]

T ∈ Rd×s /*wi sampled from s dimensional unit sphere*/
Pnys = PrpΛ

− 1
2QT

return Pnys , Z
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Algorithm 2 Encode one data point from X
Require: xi ∈ X , Projection Pnys, Landmarks Z and kernel function K
C(i) = [K(xi, z1) K(xi, z2) · · · K(xi, zs)]

T ∈ Rs

return
√

π
2d sign

(
PnysC

(i)
)

The rows of Prp ∈ Rd×s are sampled from the uniform distribution over the s dimensional unit
sphere. This allows us to use the following result regarding sign-thresholded random projection -
suppose v, v′ ∈ Rn are unit vectors, with respect to randomness in the sampling of Prp, the following
expectation holds:

E
[
1

d
sign(Pv) · sign(Pv′)

]
= (1− 2 cos−1(v · v′)/π) (Extension of Corollary 19 in [44]) (2)

Our proposed encoding method generates hypervectors for which it is true that the similarity induced
by the kernel K is preserved by dot product between encodings inH. We summarize this result in
the following informal theorem:

Theorem 1 Define Θi = Λ− 1
2QTC(i) and Θi ∈ Rn. Based on above HDC encoding algorithm, the

encoding function ϕ : X → H can be write as following:

ϕ(xi) =

√
π

2d
sign(PrpΘi) (3)

We pose no restriction on Kernel K, the following holds up to a first order approximation:

E [⟨ϕ (xi) , ϕ (xj)⟩] ≈
Ĝij√
ĜiiĜjj

i.e. normalized kernel (4)

Where Ĝij is estimated kernel value between xi and xj produced by Nyström method and the
expectation is taken with respect to randomness and orthogonality in Prp.

Proof: Let Θ̂i ∈ Rs denote Θi

||Θi|| . Noting that sign(cv) = sign(v) for any v ∈ Rs and c > 0:

⟨ϕ (xi) , ϕ (xj)⟩ =

(√
π

2

√
1

d
sign (PrpΘi)

T

√
π

2

√
1

d
sign (PrpΘj)

)

=
π

2

(
1

d
sign

(
Prp

Θi

||Θi||

)T

sign
(
Prp

Θj

||Θj ||

))

=
π

2

(
1

d
sign

(
PrpΘ̂i

)T
sign

(
PrpΘ̂j

))
(5)

Using result regarding sign-thresholded random projection in equation. 2, we have:

E [⟨ϕ(xi), ϕ(xj)⟩] ≈
π

2

1−
2 cos−1

(
Θ̂T

i Θ̂j

)
π

 (6)

Since ||Θ̂i|| = ||Θ̂j || = 1, it follows −1 ≤ Θ̂T
i Θ̂j ≤ 1, which is within the domain of cos−1. Use

first order Taylor series of cos−1(x) that cos−1(x) ≈ π
2 − x:

E [⟨ϕ(xi), ϕ(xj)⟩] ≈
π

2

1−
2
(

π
2 − Θ̂T

i Θ̂j

)
π

 (7)
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Recall Nyström method in equation 1: Θi
TΘj = (Λ− 1

2QTC(i))T (Λ− 1
2QTC(j)) = Ĝij and ||Θi|| =√

Θi
TΘi =

√
Ĝii:

Θ̂T
i Θ̂j =

Θi
TΘj

||Θi|| · ||Θj ||
=

Ĝij√
ĜiiĜjj

(8)

Finally:

E [⟨ϕ(xi), ϕ(xj)⟩] ≈
π

2

1−
2

(
π
2 −

Ĝij√
ĜiiĜjj

)
π

 =
Ĝij√
ĜiiĜjj

(9)

Thus, our proposed encoding method preserves the kernel inH in the sense that the inner-product
between any pair of encoded data points approximates the normalized kernel value of some user
defined kernel K. Since HDC uses inner-product based metric in H for inference as explained in
section 2.1, the similarity metric kernel K induces is also preserved and will be beneficial for any
subsequent HDC learning algorithms.

4 Experiments

We conduct empirical experiments with our proposed HDC encoding method in comparison with
existing HDC encoding methods. To ensure the fairness of comparison, we use the identical HDC
learning pipeline adapted from [9] when evaluating different encoding methods.

4.1 Experimental setup

Table 1: Summary of tasks and datasets
Task dataset # of training samples # of testing samples # of classes
String Protein sequences [39] 721 181 6

SMS Spam collection [1] 4459 1115 2
Graph ENZYME 1 [3] 480 120 6

NCI1 2 [45] 3288 822 2
Image MNIST [23] 60000 10000 10

FashionMNIST [47] 60000 10000 10

Baselines: The encoding method we propose is general-purpose and can be applied to a wide range
of data and tasks as long as a suitable kernel function exist. To confirm its versatility, we conduct
assessments across three distinct tasks: string, graph and image classification. In each task, we test
on two representative datasets, and a summary of each dataset is shown in Table 1. We benchmark
our method against the prevalent HDC encoding baselines within that domain. Here, we summarize
the tasks and baseline HDC encoding methods we plan to compare:

• String classification using N -gram HDC encoding approach. The details of N -gram HDC
encoding are detailed in section 2.1, here we follow the work of Imani et al [13] where
element-wise addition (bundling) is used for generating N -gram hypervectors.

• Graph classification using graph encoding scheme introduced in GraphHD [31]. The
details of this encoding procedure are discussed in section 2.2.

• Image classification using linear [34, 12] and nonlinear [44] random projection.

For our method, we use the spectrum kernel [24] for string classification, which computes the number
of unique N -grams between two input sequences explicitly. Propagation kernel [30] is used for graph

1Attributed graphs: each node is associated with a feature vector.
2Labelled graphs: each node is associated with a label to indicate the node type.
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classification for its ability to work with labelled or attributed graphs as discussed in section 2.2.
For image classification, Gaussian kernel is used. We choose the aforementioned kernels for their
relatively low computation complexity and effectiveness on respective tasks. We set the number of
landmarks as s = max(300, 2% of training data) on each dataset.

4.2 Results

Table 2: Experimental results and comparison with other HDC encoding methods. GraphHD results
obtained from original paper.[31]. Best accuracy result for each dataset are marked with underscore.

Task Dataset Ours N -gram GraphHD LinearRP NonlinearRP
[13] [31] [34, 12] [44]

String Protein sequence 99% 81% - - -
SMS Spam collection 96% 93% - - -

Graph ENZYME 63% - 26% - -
NCI1 72% - 62% - -

Image MNIST 96% - - 96% 97%
FashionMNIST 86% - - 85% 86%

The accuracy results on three tasks are summarized in Table 2. In comparison with the existing
HDC encoding techniques, our proposed encoding method is able to achieve better accuracy results
on string and graph classification tasks. Particularly, our method achieves 10%-37% and 3%-18%
better classification accuracy on graph and string classification, respectively. The improvements are
especially significant on the ENZYME dataset, as previous HDC encoding method on graph can
not utilize node attributes in fully attributed graphs but can be done with our method. On string
datasets, our method again consistently achieves better accuracy when compared with N -gram based
HDC encoding. The choice of data-appropriate kernel is important: on graph datasets, we use
propagation kernel [30] which quantifies the structural similarity between graphs through information
propagation, thus providing a more effective similarity metric to GraphHD [31]. On the other hand,
the performance on MNIST and FashionMNIST are nearly identical between our method and existing
methods, with nonlinear encoding (RFF) performing slightly better. In this case we are not able
to surpass the existing linear and nonlinear random projection encoding because the structure of
MNIST and FashionMNIST can already be well preserved through a linear kernel or Gaussian kernel.
Overall, the strength of our HDC encoding method becomes most apparent when dealing with data
with complex structure or data with attributes that traditional HDC encoding methods do not exploit,
for example, node attributes and labels in graph.

5 Discussion

This work allows future HDC works to exploit the power of kernel methods while still conforming to
the general formalism and benefits of HDC. However, even though our method is showing promising
results on small scale datasets, its applicability and effectiveness on larger scale tasks, which is
the area where HDC excels, are yet to be determined. We recognize that the improvements in our
proposed HDC encoding methods also come with additional computation costs in the form of kernel
evaluation. How to minimize such cost and how to construct landmark set in a more principled way
to achieve the best efficiency-accuracy trade-offs for HDC applications are non-trivial problems that
need further investigations.

6 Summary

In this paper, we leverage the connection between the kernel method and HDC through the lens of
Nyström method for kernel estimation. In particular, we propose a new encoding method for HDC
that can construct encoding functions using suitable kernel functions for specific tasks. We further
provide a formal proof showing the embeddings generated through our method indeed approximate
normalized kernel values, therefore enabling HDC to capture a rich notion of similarity associated
with the kernel. In our experiments, we evaluate our encoding method empirically across a variety
of tasks. Compared with existing HDC encoding methods, results show that our method achieves
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10%-37% and 3%-18% better classification accuracy on graph and string classification, respectively.
Considering the wide variety of existing kernel functions, our method may pave the way to exploring
the parallels between HDC and kernel methods for future HDC works.
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