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ABSTRACT

Federated Learning (FL) is a widely adopted distributed learn-
ing paradigm for to its privacy-preserving and collaborative
nature. In FL, each client trains and sends a local model to
the central cloud for aggregation. However, FL systems us-
ing neural network (NN) models are expensive to deploy on
constrained edge devices regarding computation and com-
munication. In this demo, we present FedHD, a FL system
using Hyperdimensional Computing (HDC). In contrast to
NN, HDC is a brain-inspired and lightweight computing
paradigm using high-dimensional vectors and associative
memory. Our measurements indicate that FedHD is 3.2x,
3.2x, 5x better on performance, energy and communication
efficiency respectively compared to NN-based FL systems
whilst maintaining similar accuracy to the state of the art.
Our code is available on GitHub!.
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1 INTRODUCTION

Federated Learning (FL) is a distributed paradigm which
trains models collaboratively without sharing data. FL boasts
widespread popularity in many applications such as health-
care [5], smart cities [12], and self-driving vehicles [2]. Tradi-
tional FL systems adopt neural network (NN) based models,
which are expensive to compute and communicate. Table 1
shows that NN models take 350 seconds per round of training
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Figure 1: FedHD workflow in 4 stages. (1) Server sends global
hypervectors to each client. (2) Clients train local class hyper-
vectors using encoded local data. (3) Models are sent back to
the server. (4) Server aggregates received class hypervectors.
on average with a model size of 8MB. Consequently, resource
limitations present a major challenge when deploying FL on
edge devices [18]. Unreliable wireless channels may also add
noise during transmission and degrade model accuracy [3].
Hyperdimensional computing (HDC) is a lightweight com-
puting paradigm that encodes data into hypervectors (high
dimensional vectors > 1000 bit) [13]. Learning is performed
through simple arithmetic operations (addition, multiplica-
tion, nearest neighbor search), reducing power and memory
usage [17] [9] [20]. HDC is also robust against noise due to
its high dimensionality. Previous works on HDC primarily fo-
cus on non-FL settings [19] [8] [17]. In this demo, we present
FedHD, an implementation of FL using HDC for low-power
devices. FedHD is lightweight in computation and commu-
nication, and robust against unreliable communication.

Dataset Time/Round Energy/Round Model Size
(Second) (Joule) (Megabyte)
MNIST [15] 73/276 350/1325 1.99/9.95
FMNIST [21] 71/395 341/1896 1.90/9.91
HAR [4] 68/121 326/581 1.99/1.67
CIFAR10 [14] 388/591 1862/2837 1.90/12.3

Table 1: Measurement results: HDC/Baseline NN

2 METHOD AND IMPLEMENTATION

Figure 1 shows the FedHD workflow. Each class is repre-
sented as a class hypervector that encodes generic class fea-
tures. The system consists of a server G and a set of edge
devices C = {cy, ¢;...}. The hypervector dimensionality and
the number of classes are D, n, respectively. Each client ¢;

Ihttps://github.com/QuanlingZhao/FedHD
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Figure 2: Left: Measured accuracy over wall-clock time on various datasets. Right: Accuracy under various noise levels.

holds a 6;, a HD classifier defined by a set of class hypervec-
tors {v;...v,} and a similarity checker. d; denotes local training
samples. Likewise, G = (0, d;) denotes the servers. Both the
server and the clients have access to an HDC encoder, 6,.

2.1 HDC Learner

Learning in HDC consists of encoding raw data into hyper-
vectors, adding hypervectors that belong to the same class
together, and performing a few rounds of retraining if needed.
Classification is done by comparing a query hypervector to
the stored class hypervectors.

HDC Encoding: We use a random binary projection en-
coder which performs well on many datasets [6]. For any
(x,y) € d;, a random projection encoder 6, (x) — {0,1}P
computes sample hypervector H by 0. (x) = f(Ex), where
E € MP*I*l is a randomly generated binary matrix and f is
an element-wise sign function.

HDC Training: Initial class hypervectors are generated
by summing the sample hypervectors from the same class:
0j = X(xy)ed;|y=j Oe(x). For all subsequent rounds, local
class hypervectors are re-trained with local samples as shown
below. The process iterates over all n classes and across mul-
tiple rounds, such that the class hypervectors gradually con-
verge to a global optimal.

vj — Oe(x) Vj#y

Negative reinforce incorrect v
vj+0e(x) j=y

Reinforce correct v

HDC Classification: Each class in the HDC model is repre-
sented as a class hypervector {v;...v,}. Classification is done
by checking the cosine similarity between the encoded sam-

ple and each class hypervector, then choosing the class with
H'Uj

I o]

V(x, y) (S dil(‘)i(Qe(x)) * y

the greatest similarity: arg max}_, cos(H, ;) =

2.2 FedHD

HDC Aggregation: In FL, locally trained models are ex-
changed each round. After the server collects all locally
trained HDC models, a global HDC model 6, can be ag-

0' \AC| ‘91_ .
%. The global model from the previous

round 9_; is also included in aggregation process as a stabiliz-
ing factor to prevent an abrupt change in class hypervectors,
which prevents catastrophic model failure.

FedHD Implementation: We implemented FedHD using

gregated: 0, =

FedML [10], an open-source FL framework that allows us to
add and deploy HDC components on IoT devices.

3 DEMONSTRATION

Our demo uses Raspberry Pis [1] and Kubernetes cluster
as clients with D=10000 and 500 local samples per client. A
desktop is used as the server for model aggregation. A state
of the art NN with FedAvg FL algorithm [16] is used as a
baseline. The experimental setup is shown in Table 2.

H Dataset Client # Method Baseline H
MNIST [15] 30 HDC CNN w/ 2HL?
FMNIST [21] 30 HDC CNN w/ 2HL?
HAR [4] 30 HDC 2FCL3
CIFAR10 [14] 7 SimCLR [7]+HDC ResNet-18 [11]

Table 2: Experimental Setup. For complex image datasets,
HDC requires a feature extractor trained by SimCLR [7].

Accuracy & Efficiency: Experimental results are shown in
Fig. 2 and Table 1. FedHD achieves comparable or higher
accuracy across all datasets while being 3.2x faster than the
baseline. While the size of NN models grow dramatically with
task complexity, the HDC model maintains communication
efficiency by scaling linearly with the number of classes.
Robustness: We evaluate FedHD’s robustness by directly
applying additive Gaussian noise to both the HDC model
[6] and the NN baseline while increasing noise standard
deviation o. Fig. 2b shows model performance of our method
compared with the baseline on MNIST with varying levels
of noise. When o > 0.5, FedHD’s accuracy is unaffected
whereas the baseline suffers from catastrophic failure.

4 CONCLUSION

In this demo, we proposed FedHD, an efficient and robust
FL system using HDC. Our results address two bottlenecks
in current FL systems by greatly reducing computation and
communication overhead and bolstering the robustness to
remain nearly unaffected against unreliable communication.
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2HL: Hidden Layer.
3FCL: Fully Connected Layer.
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