
Efficient Distributed Training in Heterogeneous Mobile Networks
with Active Sampling

Yunhui Guo Xiaofan Yu Kamalika Chaudhuri Tajana Rosing
University of California, San Diego, CA

yug185@eng.ucsd.edu, x1yu@eng.ucsd.edu, kamalika@cs.ucsd.edu, tajana@ucsd.edu

Abstract—Mobile edge computing is an emerging research
topic which aims at pushing the computation from the cloud
to the edge devices. Most of the current machine learning
(ML) algorithms, such as federated learning, are designed for
homogeneous mobile networks, that is, all the devices collect
the same type of data. In this paper, we address distributed
training of ML algorithms in heterogeneous mobile networks
where the features, rather than the samples, are distributed across
multiple heterogeneous mobile devices. Training ML models in
heterogeneous mobile networks incurs a large communication
cost due to the necessity to deliver the local data to a central
server. Inspired by active learning, which is traditionally used
to reduce the labeling cost for training ML models, we propose
an active sampling method to reduce the communication cost of
learning in heterogeneous mobile networks. Instead of sending all
the local data, the proposed active sampling method identifies and
sends only informative data from each device to the central server.
Extensive experiments on four real datasets, both with numerical
simulation and on a networked mobile system, show that the
proposed method can reduce the communication cost by up to
53% and energy consumption by up to 67% without accuracy
degradation compared with the conventional approaches.

I. INTRODUCTION

Devices such as mobile phones, tablets and mobile sensors
are generating a huge amount of data each day, enabling
everything from remotely monitoring heart rate to tracking
the location of smartphone [1], [2]. Machine learning (ML)
algorithms have become a core component for building data
analytic systems [3], [4]. Most ML algorithms are server-based
and designed for handling centralized data, that is, all the
training examples are generated in one place [5]. However,
mobile networks are distributed in nature. Each device only
gathers a subset of the data and works collaboratively with a
central server. Thus, learning in mobile networks requires ex-
tensive data communication which is challenging for training
conventional ML algorithms.

Combining information from multiple heterogeneous mo-
bile devices is a new research direction for mobile edge
computing [6]–[8]. One characteristic of learning with hetero-
geneous mobile devices is that the feature vectors, rather than
the examples, are distributed across devices [6], [7]. Most of
the works on mobile edge computing, such as federated learn-
ing [5] and distributed gradient algorithms [9], [10], mainly
focus on learning in homogeneous mobile networks where the
devices have different subsets of the dataset that share common
feature space. In contrast, learning in heterogeneous mobile
network has the following key properties which make it a

more challenging task and has only been addressed by some
recent works [7], [11].
• Distributed features: Conventional ML algorithms need ac-

cess to the full feature vectors to make predictions. However,
in heterogeneous mobile network the feature vectors are
distributed across devices. To gather together the distributed
features in the central server incurs a large communication
cost. Excessive data communication also dominates the
energy consumption of the mobile devices [12], [13] and
leads to network congestion.

• Asymmetrical network bandwidth: Many telecom com-
panies provide Internet plans with much faster download
speeds than upload speeds [14]. For example, AT&T top
download and upload speeds can have as much as 5x dif-
ference. On the other hand, the devices typically have high
sampling rates (100 Hz or higher) and deliver continuous
data to the central server. The limited upload speed poses
a challenge to communicate the local data which increases
the network latency and power usage.

• Online update: The user behavior might change over time.
It is thus important to have an online update mechanism
to adjust the trained ML model in the central server with
incoming data with minimal communication cost.

While learning in heterogeneous mobile networks is gen-
erally difficult, in this paper we leverage two key facts and
propose an active sampling algorithm for training in heteroge-
neous mobile networks to reduce the communication cost and
energy consumption. First, we observe that not all the data
are equally important. For example, the data that identify the
transition from one activity to another are more informative.
On each round of the online update, instead of sending all the
data to the central server, the proposed active sampling method
sends only the most informative data. Our key insight is that
these informative data can be chosen by using ideas from the
active learning literature [15].

To summarize, our work makes three main contributions,
• To our knowledge this is the first attempt to systematically

show that the idea of active learning can be used to greatly
reduce the communication cost and energy consumption
for training in heterogeneous mobile networks.

• We propose active sampling methods for communication
and energy efficient training in heterogeneous mobile
networks.

• We validate the proposed approaches on four real-world
datasets by both numerical simulation and practical de-

ployment. The results show that we can achieve a reduc-
tion in communication cost (in bits) by up to 53% and in
energy consumption by up to 67% without accuracy loss
compared with the conventional methods.

II. RELATED WORK

A fundamental problem in learning in distributed mobile
networks is how to make the right tradeoff between com-
munication and computation [2], [5], [16]. Based on the
characteristics of the devices, previous work can be classified
into two categories: learning with a homogeneous set of
devices [2], [5], [10] and learning with a heterogeneous set
of devices [6], [17], [18]. Conventional distributed gradient
descent algorithms [9], [10], [19] and federated learning [5]
fall under the first category where the examples are distributed
across devices. The main communication cost in this setting
comes from sending the model parameters between devices
and the central server [20]. The methods for reducing com-
munication cost in homogeneous mobile networks can be
classified into two threads. One is model compression and
quantization, which tries to reduce the communication cost by
compressing or quantizing the model parameters [20]–[22].
Another is from an algorithmic perspective, which focuses on
developing communication efficient optimization algorithms
[23].

In contrast, in heterogeneous mobile networks the feature
vectors, rather than the examples, are distributed across dif-
ferent devices [6], [7], [18]. The distributed features further
increase the communication cost between devices and the
central server [17], [18]. In [6], the authors assume the devices
can communicate with each other which is unrealistic in real-
world mobile applications. In [7], [11], the authors proposed to
distribute the model in the central server onto the devices and
conduct computation locally to reduce the dimension of the
data. However, these works mainly focus on inference rather
than training in heterogeneous mobile networks.

III. BACKGROUND

In this section, we formulate the problem of learning
in heterogeneous mobile networks. Given a heterogeneous
mobile network which consists of one central server C and
K mobile devices. The central server and the mobile de-
vices are connected via wireless network. We consider an
online learning setting where the examples arrive sequentially
{(x1,y1), (x2,y2), ..., (xT ,yT)}, where xt ∈ Rm is an m-
dimensional feature vector and yt is the one-hot representation
of the ground-truth label. The maximum class index is denoted
as I . Consider learning a neural network fθ(x) with parameter
θ for classification in the central server. The prediction of the
model can be computed as ŷ = softmax(z) = exp(z)∑I

i=1 exp(zi)
,

where z = fθ(x). Denote the cross-entropy loss function as
`, the loss of the example x can be computed as `(ŷ;y) =
− 1
I

∑I
i=1 yi log ŷi, where ŷi and yi is the i-th component

of ŷ and y, respectively. In heterogeneous mobile network,
each device k contains a partial feature vector xk ∈ Rm1 .
The data from all K devices can be concatenated to form

Fig. 1: The overview of the proposed active sampling
approach for training in heterogeneous mobile networks.

a single feature vector x, i.e., m =
∑K
k=1m1. Typically, xk

itself does not contain enough information to learn a predictive
model locally, which indicates that all the mobile devices need
to send the local data to the central server [7], [11], [24].
The communication process thus incurs prohibitively large
communication and energy costs [7], [11].

IV. ACTIVE SAMPLING IN HETERO-
GENEOUS MOBILE NETWORKS

A. Active Learning

Label acquisition for unlabeled data is expensive since it
requires the participation of domain experts. One important
topic in machine learning research is how to train an accurate
predictive model based on as few labeled examples as possible.
Active learning [15], [25], [26], which reduces the labeling
cost by querying the labels of the most informative examples,
has attracted a lot of attention recently. Assume we have
a dataset D = {(x1, y1), (x2, y2), ..., (xn, yn)}. The set of
the examples is denoted as Dx = {x1,x2, ...,xn}. In active
learning, we aim to learn a probabilistic model p(y|x; θ) using
as few labeled examples as possible. To achieve this, we start
with a subset L ∈ D of the dataset and a large pool of
unlabeled example Ux = Dx \ Lx. We first train a model
M0 based on L. In each iteration of active learning, we query
the label for an example x ∈ Ux which can most improve
the generalization ability of the current model. Once we have
identified the sample to query, we add it to L and its label is
given by an oracle at a cost. The oracle is typically a human
annotator. We retrain the model again on L with the additional
example x. The above process is repeated until a predefined
accuracy is met.

One way to evaluate the informativeness of the example is
called uncertainty sampling [15]. In uncertainty sampling, an
active learner queries the label of the example about which it is

most uncertain how to label based on an acquisition function
U(x; θ). Commonly used acquisition functions include least
confident and confidence margin [15],
• Least confident: x∗LC = 1− argminx∈Ux

p(y∗|x; θ), where
y∗ = argmaxx∈Ux

p(y∗|x; θ) is the most likely labeling.
• Confidence margin: x∗CM = 1− argminx∈Ux

[p(y∗|x; θ)−
p(y∗∗|x; θ)], where y∗∗ is the second most likely labeling.

B. Proposed approach

In the context of online learning, it is necessary to update the
initial model in the central server to address the dynamics of
the environment. However, naively sending all the local data
to the central server incurs a large communication cost. In
this paper, we propose a communication and energy efficient
active sampling algorithm for training in heterogeneous mobile
networks. The overview of the proposed architecture is shown
in Figure 1. In the central server for each device k of all the
K devices, we construct a model fθk . The outputs of all the
models are concatenated via an aggregate function and are
used as input for a cloud specific model fθc . The weights
of all models in cloud are denoted as θ. On each device k,
we construct a local model f̂θk with the same architecture
as fθk . During the online update process, the local devices
send the collected data to the cloud. The cloud updates the
models based on received data and sends the updated weights
to each local device. On each round, the proposed algorithm
identifies informative samples based on f̂θk . This means that
only a subset of the devices need to communicate with the
central server. For example, in Figure 1, only the first device
and the third device need to send data to the cloud. On the
other hand, in order to be updated, the central server models
needs data from all the devices to evaluate the loss function.
For those devices which do not send data, we synthesize their
data in the central server based on the available data from other
devices. After the models are updated in the central server, the
weights of model fθk is sent to device k for synchronization.
Finally, in order to prevent one device from dominating the
data communication, we propose a lightweight load balancing
mechanism to promote each device to communicate roughly
the same which can increase the lifetime of the overall system.

1) Design of Acquisition function: We assume that there is
an initial model M0 in the central server, we aim to update
M0 based on the data from all the devices. At each timestamp
t, device k collects data xkt . The data from all the devices are
denoted as xt. The collection of data without xkt is denoted as
xt \ xkt . Our goal is to update the central server model with as
few as communication rounds as possible. To achieve this, we
propose active sampling to measure the informativeness of xkt
based on the local model on each device. Instead of sending all
the local measurements to the central server, we only consider
the informative ones. We propose two acquisition functions,
local uncertainty and delayed global uncertainty, for applying
active sampling in heterogeneous mobile network.
Local Uncertainty. In local uncertainty (LU), we assume the
devices are independent with each other when evaluating the
uncertainty locally, that is, the acquisition function U(x; θ)

only depends on xk and θk. Although we assume the devices
are independent, it is worth noting that since the cloud specific
model and the models for local devices are trained in an end
to end manner via backpropagation, the correlations between
different models can be learned in the cloud [27].

On each round t, the central server sends the weight θk to
the corresponding device k. Device k updates the local model
and evaluates the informativeness of xkt via an uncertainty
function U(xkt ; θk) which can be the entropy function, least
confident function or confidence margin function [15]. In the
experiments, we evaluate the least confident function and
the confidence margin function due to their effectiveness
[15]. Device k sends xkt to the central server only if the
local uncertainty U(xkt ; θk) is above a given threshold γ.
The independence assumption leads to a great reduction in
communication cost – the overhead is that on each round the
central server needs to send θk to each device k which is
tolerable since the dimension of θk is usually small.
Delayed Global Uncertainty. In delayed global uncertainty
(DGU), at each timestamp t, the central server sends the
weights of all the models θ and xt−1 \ xt−1,k to device k.
Together with xkt , we form a new feature vector, denoted
by [xkt , xt−1 \ xkt−1], which is xt−1 with xkt−1 replaced by
xkt . In DGU, device k evaluates the informativeness of xt,k
via the function U([xkt , xt−1 \ xkt−1]; θ). Compared with the
true global uncertainty U(xt; θ), it is called delayed global
uncertainty since all the measurements have a lag of one
timestamp except xkt . The delayed global uncertainty can be
seem as a better approximation to the true global uncertainty,
however it increases the downlink communication cost.

The proposed active sampling approaches trade downlink
communication cost for uplink communication cost. Although
on each round the central server needs to communicate with
the devices, the devices send data to the central server only if
the data is informative. Examples of informative data include
readings that indicate the device is misbehaving or the user
activity is changing – both cases are only a small portion of
the overall data stream. Due to the fact that the download speed
is typically 5x faster than the upload speed, we can leverage
the extra download bandwidth to reduce the upload congestion
and increase the battery life of the devices.

2) Synthesized measurements: On each round t, if the
central server did not receive the data from device k, we
use a machine learning model S(xkt |x

j
t , yt;β) with parameters

β, typically a neural network, to predict the missing data
of device k with the measurement received from device j.
In the experiments, we use a two-layer neural network for
computational efficiency. Note that xkt is not only modeled
as a function of xjt , but is also conditioned on the label yt
of the data. The label information provides extra supervision
for training the synthesized model S to better recover the
missing data. The choice of device j depends on the actual
deployment and characteristics of the datasets. For example,
we can choose the device which has the highest sampling rate,
since it collects most fine-grained measurements. With the

synthesized measurements, we can update the central server
model by relying on a small subset of informative local data.

3) Load balance: Excessive data communication is the
main cause of the energy consumption in mobile and sensor
networks [2]. It is thus critical to prevent one device from
dominating the data communication which can shorten the
lifetime of the overall system. To achieve this, we propose a
lightweight load balancing mechanism to promote each device
to communicate the same number of bits during the online
update. The proposed load balancing mechanism adjusts the
uncertainty of the data collected from a particular device based
on the number of times this device has communicated before.

Suppose there are K devices in the mobile network. In
the central server we maintain a vector M ∈ RK which
is initialized to be zeros. On each round t as the central
server receives data from device k, M [k] increases its stored
value by 1. We normalize L via a softmax function to obtain
Mnorm. Mnorm[k] can be regarded as the proportion of data
sent from device k. Then the central server sends Lnorm[k]
to device k. With local uncertainty the informativeness of
xkt is calculated as (1/K

Mnorm[k])
λkU(xkt ; θk), where λk is a

hyperparameter which can be used to adjust the strength of the
load balancing. Intuitively, if Mnorm[k] is greater than 1/K,
which means that device k communicates more bits than the
average, we scale down the informativeness of xkt . With the
proposed load balancing mechanism, the communication cost
is distributed evenly across all the devices.

V. ANALYSIS AND EXPERIMENTS

A. Datasets

• MNIST [28]: In mobile networks, we may have multiple
devices which record different angles or parts of an object.
To identify the object in the image, we need to combine
recordings from all the devices to form a single feature
vector. We use the MNIST dataset, which is the canonical
dataset used for digit classification, as a proof of concept.
The MNIST dataset consists of hand-written digits from 0
to 9. Each image has 784 dimensions. We assume there are
7 devices, and each records 122 dimensions of the original
image. The task is to identify the digit in the image in the
test dataset by utilizing the recordings from all the 7 devices.

• PAMAP2 [29]: This is a physical activity recognition
dataset which contains 18 different physical activities per-
formed by 9 subjects. There are a total of 4 sensors, 3 inertial
measurement units and a heart rate monitor. We consider
the 5 main activities {lying, sitting, standing, walking and
running} and use the data from subject 1 in the experiments.

• HAR [30]: This is a recently introduced human activity
recognition dataset. It contains data collecting from 17
mobile sensors. There are a total of 30 subject performing 6
activities {walking, walking upstairs, walking downstairs,
sitting, standing, laying}. For consistency, we use the first
7 sensors in the experiments. The data partition is the same
as in [30].

• Google Glass (GLEAM) [31]: The GLEAM dataset consists
of two hours of high resolution sensor data collected using

Google Glass. There are 6 sensors and 38 subjects. The
subjects conduct 6 activities {eating, talking, drinking, walk-
ing, going climbing stairs, computer work} in a controlled
environment. We use the data from the first subject as a case
study. 40% of the examples are used as the training set and
the rest is used as the test set.

B. Evaluation Protocol

In the experiments, we use 30% of the original training
samples in each dataset as validation set and the rest is used
as the actual training set. 10% of the training examples are
used to train the initial model M0 in the central server and the
rest is used for online update. We run the online update for
a total of 1000 rounds. One each round, we use the proposed
active sampling methods to decide whether or not to send
the corresponding data. The central server model is updated
every 50 rounds, also called a batch. The total number of
batches is 200. We report results of different threshold values
for completeness. In order to find the best threshold value
for each method, we test the trained model on the validation
set and choose the threshold value which achieves the highest
validation accuracy. In the experiments, we consider the cases
with and without the proposed load balancing mechanism. We
consider the following three metrics for comparing different
methods,
• Communication cost: the total number of bits communicated
by all the devices. It is the sum of the bits communicated by
each individual device during the online update.
• Test accuracy: the accuracy of model on the test dataset after
the online update.
• Energy consumption: the energy consumption of the all the
devices during the online update. The energy consumption
consists of the energy consumption for both computation and
communication.

C. Baselines

We consider the following baselines in the experiments,
• Local Prediction (LP): we only utilize the data on each

device to predict the labels of the test dataset. The total
communication cost is minimal in this case, however the
accuracy suffers since we cannot use the information from
all the devices.

• Passive Learning (PL): Each device sends all the data to the
central server which incurs a large communication cost.

• Random Sampling (RS): We consider sending γ% (γ = 50)
of the local data collected by each device to the central
server. On each round, we sample from a Bernoulli(γ/100)
and decide whether or not to send the measurement based
on the sampling output.

D. Implementation details

The neural network for each device consists of three layers
with one layer for computing the local probability. The cloud
specific model consists of two layers. We adopt Adam as
the optimizer. The learning rate is set to be 0.01 and decays
exponentially with a factor of 0.9. We train the initial models

Fig. 2: Results of local prediction on the four datasets during the online update.

Fig. 3: Normalized communication cost and final test accuracy with local uncertainty and load balance. The bars
show the communication cost of different methods. Blue bars show the results of the proposed methods with different
thresholds (Th). The red line is the test accuracy. First row: local uncertainty with least confident function. Second
row: local uncertainty with confidence margin function. Yellow bar: random sampling (RS). The results were averaged
over 5 runs.

Fig. 4: Normalized communication cost and final test accuracy of delayed global uncertainty and load balance. The
bars show the communication cost of different methods. Blue bars show the results of the proposed methods with
different thresholds (Th). The red line is the test accuracy. First row: delayed global uncertainty with least confident
function. Second row: delayed global uncertainty with confidence margin function. Yellow bar: random sampling (RS).
The results were averaged over 5 runs.

for a total of 10 epochs. No regularization is used in the
experiments. All the models are implemented in Tensorflow
[3]. We train the model S(xk|xj , y;β) which is a two-layer
neural network for synthesizing measurements on the training
dataset using mean squared error. For simplicity, we use the
measurements from device 1 to predict the measurements for
all other devices. During the online update, if the data of device
1 is missing, we impute the missing value with the historical

average.

E. Numerical Results

Do we need measurement from all sensors to learn an ac-
curate predictive model in the central server? In Fig 2, we
show the results of local predictions on the four benchmarks.
We make two observations based on the results. First, if we
only train models locally using the data from one device, the
models suffer great loss in accuracy. This is due to the fact that

Dataset
Method LU DGU RS

MNIST [28] 95.24±0.18 94.90±0.22 94.30±0.21
PAMAP2 [29] 99.52±0.23 99.34±0.13 98.59±0.29

HAR [30] 84.69±0.48 84.76±0.40 83.47±0.76
GLEAM [31] 76.93±0.48 77.34±0.57 74.55±0.86

TABLE I: Test accuracy (%) without load balance mechanism.
For each method (LU, DGU), the best threshold value and
acquisition function is found on the validation set.

Dataset
Method LU DGU RS

MNIST [28] 95.26±0.13 95.70±0.12 94.30±0.21
PAMAP2 [29] 99.68±0.13 99.61±0.21 98.59±0.29

HAR [30] 87.37±0.44 85.98±0.41 83.47±0.76
GLEAM [31] 75.79±0.40 76.82±0.38 74.55±0.86

TABLE II: Test accuracy (%) with load balance mechanism.
For each method (LU, DGU), the best threshold value and
acquisition function is found on the validation set.

each device only captures a subset of the full feature vector
which cannot approximate the underlying distribution between
the input and the label. This also indicates the necessity to
communicate the local data to a central server and train models
based on data from all the devices. Second, the accuracy
consistently improves with more and more incoming data. This
implies the importance to adjust the trained model with newly
collected measurements.
How does different active sampling methods work for
distributed training in heterogeneous sensor networks? In
Figure 3 - Figure 4, we show the results of the proposed active
sampling methods on the four datasets with the load balancing
mechanism. For the bar plots, the total communication round
is normalized against the passive learning. The normalized
communication cost and test accuracy is calculated after the
online update. We show the results with different threshold
values for comprehensiveness. In practice, we can use the best
threshold value found on the validation set.
Active Sampling vs. Passive Learning As shown in Figure
3 and Figure 4, we note that, as expected, compared with
passive learning the proposed active learning methods typically
only suffer about 1% test accuracy loss while reducing the
communication cost by 50%. This is because in each round
the proposed active sampling methods only send informative
data about which the current central server model are most
uncertain how to label. Thus the central server model can be
better adapted to the incoming user data with the proposed
approach. Thus we can greatly reduce the communication
cost with the proposed approaches without accuracy loss for
training in heterogeneous mobile networks.
Active Sampling vs. Random Sampling In Table I and II,
we report the test accuracy with the best threshold value
and acquisition function found on the validation set. The
results are averaged over 5 runs and the standard deviation
is reported. From the tables, we can see that the proposed
methods outperform Random Sample (RS) on all the datasets,
in some cases with a large margin. Unlike the proposed active
sampling method, naive random sampling fails to capture the
important data and cannot identify the change points.
With Load Balance Mechanism vs. Without Load Balance

Mechanism The results in Table I and Table II show the best
accuracy with and without the load balancing mechanism. We
found that the accuracy is typically lower without the load
balancing mechanism except on the GLEAM dataset. For the
GLEAM dataset, we found that for LU the best acquisition
function is confidence margin function with threshold value
γ = 0.2. For DGU the best acquisition function is confidence
margin function with threshold value γ = 0.1. We further
observe that the total communication cost on the GLEAM
dataset with the best acquisition function and the threshold
value is much higher than the case of with load balancing
mechanism, the extra data communication can explain the
slight higher accuracy in the case of without load balance. In
summary, the proposed load balance mechanism can reduce
the sensitivity of the model to different threshold values and
avoid the situation that the model will bias towards a small
subset of the devices.
Acquisition Function Interestingly, we also observe that dif-
ferent acquisition functions yield similar performance on dif-
ferent datasets. This implies that the proposed active sampling
methods are robust to the choices of acquisition functions,
though the thresholds need to be adjusted to balance the
trade-off between communication cost and test accuracy. The
insensitivity of proposed method to the choice of acquisition
functions is of great importance for practical applications since
it reduces the time for searching the optimal configurations.
LU vs. DGU Finally when we compare local uncertainty (LU)
with delayed global uncertainty (DGU), we note that at the
end of the online update, LU typically sends more data to the
central server than DGU which leads to a higher test accuracy.
We conjecture that this is because in DUG the data from
other devices decrease the uncertainty of the newly collected
data which results in a lower upload communication cost
and test accuracy compared with LU. These results suggest
that, we can select the methods based on the actual network
condition and the test accuracy requirement. If the download
bandwidth is high enough to communicate the sensor data
from the central server to the local sensors, DGU allows us to
trade for the excessive download bandwidth for a lower upload
communication cost. Otherwise, LU can achieve a better test
accuracy with a slightly increase in upload communication.

VI. PRACTICAL DEPLOYMENT

A. Setup

To demonstrate the benefits the proposed active sampling
method for real-world applications, we deploy a prototype
network in our lab and measure the energy and communication
saving of the proposed active learning approach compared
with the passive learning approach. We consider a common
topology setting in various Internet-of-Things (IoT) or mobile
applications such as Smart Home, Smart Building, etc. As
shown in Figure 7, the prototype network locates in our
6m×10m lab, consisting of seven Raspberry Pi 3B (RPi 3B)
devices and one conventional laptop as a central server. All
devices are connected to a router and form a local heteroge-
neous mobile network. The RPis communicate with the central

(a) (b)

Fig. 5: Energy saving for human activity recognition. Left: The energy saving of all devices. Right: the energy saving
of each individual device.

(a) (b)

Fig. 6: Energy saving for image classification. Left: The energy saving of all devices. Right: the energy saving of each
individual device.

Fig. 7: Left: deployment topology of the prototype network.
Right: configuration of each RPi 3B, which has a current
sensor INA219 attached to it.

Fig. 8: Energy consumption breakdown of the passive
learning approach and the proposed active sampling ap-
proach.

server using the MQTT protocol which is commonly used
in IoT and mobile applications. The network bandwidth is
controlled by the wondershaper tool [32]. We experiment with
communication bandwidths of 200, 700 and 5000 kbps, which

correspond to typical bandwidths of constrained Bluetooth,
Bluetooth, and WiFi, respectively. For energy measurement,
we attach a high side current sensor INA219 [33] to each RPi
3B, as depicted in Figure 7. INA219 reports high side voltage
and DC current draw with 1% precision.

The experiments are conducted based on two applications,
image classification and human activity recognition with the
MNIST dataset and the HAR dataset, respectively. For image
classification, we evenly distribute the feature vector on each
device. For human activity recognition, each device have the
measurements of one particular sensor. The neural network
architecture is consistent with the setup described in Section
V-D. We repeat the online update round for ten epochs
and compare the active sampling approach with the passive
learning approach in terms of energy consumption. For the
active sampling approach, we use LU for simplicity as it has
been shown that LU can achieve similar accuracy as DGU in
Section V-E. Entropy is used as the acquisition function for
calculating the informativeness of the samples.

B. Results and Discussion

All energy saving The results of energy saving of all the
devices are shown in Figure 5a and 6a. It is clear that the pro-
posed active sampling approach can greatly reduce the energy
consumption of the system. For human activity recognition,
the energy saving is 67.68% , 21.55%, and 17.34% with a
bandwidth of 200 kbps, 700 kbps and 5000 kbps, respectively.
For image classification, the energy saving is 58.01%, 36.37%,
and 42.04% with a bandwidth of 200 kbps, 700 kbps and
5000 kbps, respectively. Notably the proposed active sampling
approach achieves a large energy consumption reduction than
the passive learning approach under a low bandwidth (200

kbps). This is particularly important for real-world mobile
applications due to the network bandwidth is often limited.
Energy saving of each device We further show the energy
saving of each individual device in Figure 5b and Figure 6b. It
can be seen that due to the heterogeneity of the devices (since
they have different features), different devices have different
patterns of energy saving. Some devices even have a higher
energy consumption with the active sampling approach due
to the additional computation. This indicates that not all the
devices are equally important for the task. With the proposed
active sampling approach, we can leverage this fact to reduce
the data communication of the unimportant devices to save the
energy of the whole system.
Energy consumption breakdown We show the energy con-
sumption breakdown of the proposed active sampling approach
and the passive learning approach in Figure 8 under differ-
ent network conditions. For the passive learning approach,
the energy consumption consists of sample query and data
communication. For the active sampling approach, the energy
consumption consists of sample query, local weight update and
data communication. We can see that for both approaches,
the energy consumed by sample query is negligible. The
total energy consumption of local weight update and data
communication of the active sampling approach is usually less
than the energy consumption of the passive learning approach.

VII. CONCLUSION

In this paper, we propose an active sampling method
for communication efficient training in heterogeneous sensor
networks. Instead of sending all the local data to the cen-
tral server, the proposed method identifies and sends only
informative informative measurements. We also propose a
synthesized measurement approach to accurately recover the
missing measurements which allows the central server model
can be updated based on a small set of informative data.
Finally, we propose a load balance mechanism to distribute
the communication cost across all the devices. Experimental
results show that the proposed active sampling methods can
reduce the communication cost by up to 53% and energy
consumption by up to 67% without accuracy degradation.

VIII. ACKNOWLEDGEMENT

This work was supported in part by CRISP, one of six
centers in JUMP, an SRC program sponsored by DARPA.
This work is also supported by NSF CHASE-CI #1730158,
NSF FET #1911095, NSF CC* NPEO #1826967. The paper
was also funded in part by SRC AIHW grants.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[2] C. Guestrin, P. Bodik, R. Thibaux, M. Paskin, and S. Madden, “Dis-
tributed regression: an efficient framework for modeling sensor network
data,” in Proceedings of the 3rd international symposium on Information
processing in sensor networks. ACM, 2004, pp. 1–10.

[3] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), 2016, pp. 265–283.

[4] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets.”

[5] H. B. McMahan, E. Moore, D. Ramage, S. Hampson et al.,
“Communication-efficient learning of deep networks from decentralized
data,” arXiv preprint arXiv:1602.05629, 2016.

[6] B. Ying, K. Yuan, and A. H. Sayed, “Supervised learning under
distributed features,” IEEE Transactions on Signal Processing, vol. 67,
no. 4, pp. 977–992, 2018.

[7] A. Thomas, Y. Guo, Y. Kim, B. Aksanli, A. Kumar, and T. S. Rosing,
“Hierarchical and distributed machine learning inference beyond the
edge,” in 2019 IEEE 16th International Conference on Networking,
Sensing and Control (ICNSC). IEEE, 2019, pp. 18–23.

[8] N. AlDuaij, A. Van’t Hof, and J. Nieh, “Heterogeneous multi-mobile
computing,” in Proceedings of the 17th Annual International Conference
on Mobile Systems, Applications, and Services. ACM, 2019.

[9] Y. Zhang, M. J. Wainwright, and J. C. Duchi, “Communication-efficient
algorithms for statistical optimization,” in Advances in Neural Informa-
tion Processing Systems, 2012, pp. 1502–1510.

[10] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “When edge meets learning: Adaptive control for resource-
constrained distributed machine learning,” in IEEE INFOCOM 2018-
IEEE Conference on Computer Communications. IEEE, 2018.

[11] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Distributed deep
neural networks over the cloud, the edge and end devices,” in 2017
IEEE 37th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2017, pp. 328–339.

[12] S. R. Madden, “The design and evaluation of a query processing
architecture for sensor networks,” Ph.D. dissertation, University of
California, Berkeley, 2003.

[13] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep learning for sensor-
based activity recognition: A survey,” Pattern Recognition Letters, vol.
119, pp. 3–11, 2019.

[14] S. Bauer, D. D. Clark, and W. Lehr, “Understanding broadband speed
measurements.” Tprc, 2010.

[15] B. Settles, “Active learning literature survey,” University of Wisconsin-
Madison Department of Computer Sciences, Tech. Rep., 2009.

[16] A. Jain and E. Y. Chang, “Adaptive sampling for sensor networks,” in
Proceeedings of the 1st international workshop on Data management
for sensor networks: in conjunction with VLDB 2004. ACM, 2004.

[17] J. Chen, Z. J. Towfic, and A. H. Sayed, “Dictionary learning over
distributed models,” IEEE Transactions on Signal Processing, vol. 63,
no. 4, pp. 1001–1016, 2014.

[18] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation:
numerical methods. Prentice hall Englewood Cliffs, NJ, 1989, vol. 23.

[19] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, Q. V. Le et al., “Large scale distributed deep
networks,” in Advances in neural information processing systems, 2012,
pp. 1223–1231.

[20] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[21] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” arXiv preprint arXiv:1712.01887, 2017.

[22] Y. Guo, “A survey on methods and theories of quantized neural net-
works,” arXiv preprint arXiv:1808.04752, 2018.

[23] O. Shamir, N. Srebro, and T. Zhang, “Communication-efficient dis-
tributed optimization using an approximate newton-type method,” in
International conference on machine learning, 2014, pp. 1000–1008.

[24] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split learning
for health: Distributed deep learning without sharing raw patient data,”
arXiv preprint arXiv:1812.00564, 2018.

[25] S. Dasgupta, “Two faces of active learning,” Theoretical computer
science, vol. 412, no. 19, pp. 1767–1781, 2011.

[26] K. Konyushkova, R. Sznitman, and P. Fua, “Learning active learning
from data,” in Advances in Neural Information Processing Systems,
2017, pp. 4225–4235.

[27] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, 2016.
[28] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based

learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[29] A. Reiss and D. Stricker, “Introducing a new benchmarked dataset for
activity monitoring,” in 2012 16th International Symposium on Wearable
Computers. IEEE, 2012, pp. 108–109.

[30] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A public
domain dataset for human activity recognition using smartphones.”

[31] S. A. Rahman, C. Merck, Y. Huang, and S. Kleinberg, “Unintrusive
eating recognition using google glass,” in 2015 9th International Con-
ference on Pervasive Computing Technologies for Healthcare (Perva-
siveHealth). IEEE, 2015, pp. 108–111.

[32] “Wondershaper,” https://github.com/magnific0/wondershaper, [Online].
[33] “INA219 High Side DC Current Sensor Breakout,”

https://www.adafruit.com/product/904, [Online].

