
EmbHD
A Library for Hyperdimensional Computing
Research on MCU-Class Devices

Alexander Redding
Xiaofan Yu
Shengfan Hu
Pat Pannuto
Tajana Rosing

NET4us ’23, October 6, 2023

Edge Computing
• The global edge computing market size is expected to

expand at a compound annual growth rate (CAGR) of
37.9% from 2023 to 20301
• Benefits of on-device inference and training
- Timely decision making
- Potentially lower power due to less comm. costs
- More secure

• Typically *low-power SoCs w/ multi-core application
processors
- *Tethered to power source, limited long-term mobility

2

Modern Microcontrollers

• Historically simple 8/16-bit
• Newest generation has seen transition to more

capable 32-bit processors (ex, ARM Cortex-M
family)
• Not as powerful as multicore SoCs
• But…

- Unparalleled in power-efficiency
- Lower cost

3

TinyML
• Running optimized ML models on MCUs
- Neural networks

• MCU-class hardware:
- < 1mW, <100KB memory, 1-2MB flash

• MCU runs same tasks as multi-core
system

4

Source: Matthew Stewart

https://towardsdatascience.com/tiny-machine-learning-the-next-ai-revolution-495c26463868

• Training is fast + efficient

• Robust to noise

• Resilient

Hyperdimensional Computing
• Training is resource-intense

• Noise sensitive

• Best accuracy

Neural Networks

5

TensorFlow Lite Micro EmbHD

Our Work

Hyperdimensional
Computing
A crash course

6

7

What is Hyperdimensional Computing?

Operations
Binding

Combine 2 HVs into 1

⊗ : H! × H" → H#

Ints: Cross product
Binary: XOR

8

Bundling
Create unordered collection of HVs

⊕ : H! + H" → H#

Ints: Sum
Binary: OR

Operations
Similarity

How close are 2 hypervectors in hyperspace?

δ(H!, H") → d
Ints: Cosine-similarity
Binary: Hamming-distance

9

Encoding

10

sample data

hyperspace

ID-Encoding

11

45 50 54 57 39
0 1 2 3 4

…intensity
location

pixels

Similar pixel intensities = Similar hypervectors
Location = No correlation

Preserve data correlation between dimensions

ID-Encoding

12

Pixel intensities = Level Hypervectors
 Location = Random Hypervectors

011011011001…
010011011001…
010011011101…

0
1
2
…

100101110011…
010101001111…
111000111000…

0
1
2
…

LevelRandom

hypervectors{

ID-Encoding

13

001111000011…3
Random

45 50 54 57 39
0 1 2 3 4

…
feature vector (pixels)

100001111000…57
Level

intensity

location

⊗

HV0 HV1 HV2⊕ ⊕ ⊕ … = encoded image
(hypervector)

=

encoded pixels

14

Training 110010001100…

001111000011…

encoding

sample
hypervector

⊕
class

hypervector

Repeat for all samples

15

Inference 110010001100…

111100110011…

encoding

sample
hypervector

δ
class

hypervectors 010010101101…
101011010010…

0
1
2

label Prediction
=

Most similar{

• Hyperdimensional
Computing

• Training + Inference

• Enable new capabilities

EmbHD
• Traditional Neural Networks

• Inference

• Optimal performance

TensorFlow Lite
Micro

16

Previous Work Our Work
Not a replacement

(first)

• We introduce EmbHD, the first library for Hyperdimensional Computing (HDC) on MCU-class devices
• EmbHD is a tool for researchers to test HDC conveniently on MCUs

EmbHD System Design
• ~HDC virtual machine written in C
• Built on generic matrix representation
- HDC operations map to matrix operations
- Maximum re-usability for future additions (ex, binary NNs)
• ARM Cortex-M4 DSP instruction optimizations

17

$ = 10, 000 Binary Hypervector

MMult(dst, row/HV, src0, row/HV, src1, row/
HV);binding

extern Matrix Random;
extern Matrix Level;
extern Matrix weights;
extern Matrix tempint8;
extern Matrix tempbin;

void encode(const uint8_t * image){
 for (unsigned int pix = 0; pix < IMG_SIZE; pix++){
 MMult(&tempbin, 0, &Random, pix, &Level, image[pix]);
 if (pix == 0) { // Reset
 MConvert(&tempint8, 0, &tempbin, 0);
 } else {
 MConvert(&tempint8, 1, &tempbin, 0);
 MAdd(&tempint8, 0, &tempint8, 0, &tempint8, 1);
 }
 }
}

18

hyperspaces (rows are hypervectors)}
binding

} bundling*

*majority rules

19

EmbHD Workflow
1.Pre-generate hypervectors w/ Torchhd* (random, level, class, temp)

*Python library for Hyperdimensional Computing built on PyTorch
2.*Optionally: train model in Python (ie, fill class hypervectors)
3.EmbHD Python library to export Torchhd hypervectors to C-header file
4.Write C source w/ EmbHD library functions for encoding
5.Compile and deploy

Generating 100 random hypervectors of $ = 10,000

• SparkFun Redboard
Artemis
• ARM CMSIS-NN Kernel
• Float and 8-bit int
• MNIST + ISOLET

TFLite Micro
• SparkFun Redboard

Artemis
• Cortex-M4 DSP Instructions
• Binary Hypervectors
• MNIST + ISOLET
• Baseline HDC

EmbHD

20

Evaluation

21

Results

22

Conclusion
• In this paper, we introduce EmbHD, the first library supporting

Hyperdimensional Computing on MCU-class devices
• Hyperdimensional Computing is a new brain-inspired computing

paradigms that features lightweight operations, single-pass training and
robustness to noise.
• We conduct preliminary experiments on the SparkFun Redboard Artemis

board
• EmbHD is NOT a replacement for traditional ML libraries (TFLite Micro),

but instead a tool for researchers to evaluate HDC for deployment

23

Thank
You

Check out EmbHD: github.com/alexredd99/EmbHD

https://github.com/alexredd99/EmbHD

