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Abstract
On-device environmental sound classification (ESC) in rural ar-

eas faces one major challenge of resource efficiency. Traditional

methods rely on resource-intensive machine learning models, mak-

ing them impractical for small edge devices like microcontrollers

(MCUs). This poster presents SoundHD, a novel ESC solution us-

ing Hyperdimensional Computing (HDC), a brain-inspired and

lightweight computing paradigm. We further optimize the memory

footprint for deployment on MCUs. Our initial results show that

SoundHD can be deployed and executed effectively on memory-

constrained MCUs.

CCS Concepts
• Computing methodologies→ Supervised learning by clas-
sification; • Computer systems organization → Embedded
software; • Theory of computation→Models of learning.
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1 Introduction
Environmental sound classification (ESC) is essential for managing

biological and human environments, including wildlife monitoring

and urban sound detection [6]. ESC devices are often deployed

in rural areas with limited connectivity and electricity, requiring

local execution on battery-powered devices. Therefore, developing
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Figure 1: Overview of SoundHD including training and inference.

resource-efficient and sustainable ESC solutions is crucial, espe-

cially for small platforms like MCUs [6]. Conventional ESC algo-

rithms rely on complex neural networks to achieve accurate predic-

tions. Models like Transformer-based Beats have up to 90M param-

eters [3]. Even the smallest, ACDNet [5] has 303kB of SRAM and

requires 2.7s to perform one inference on a high-end MCU. These

methods are impractical for resource-constrained MCUs, which

have limited SRAM (≤ 256KB) and computational capabilities.

To overcome these limitations, we introduce SoundHD, the first

ESC framework based on Hyperdimensional Computing (HDC).

HDC is a brain-inspired computing paradigm that operates in a high-

dimensional vector space, offering lightweight training andminimal

memory requirements [8]. Consequently, SoundHD offers superior

memory and computational efficiency compared to existing models,

making it ideal for resource-constrained devices such as MCUs. We

further propose a compression technique to reduce the memory

footprint of SoundHD, allowing it to fit onMCUs. SoundHD enables

lightweight on-device learning for rural sound monitoring with

limited on-board resources.

2 Method and Implementation
Based onHDC, SoundHD represents sound clips in high-dimensional

and low-precision vectors, referred to as hypervectors [8]. Learn-

ing is performed through simple element-wise operations on these

hypervectors. In this section, we provide a detailed explanation of

SoundHD’s HDC-based learning process, compression techniques,

and system implementation.

HDCLearning: Figure 1 provides an overview of HDC-based learn-

ing in SoundHD. We begin by extracting features from raw sound

clips, which applies Mel-Spectrogram transformation and calculates

frequency channel-wise statistics, such as the mean and standard

deviation. This process also incorporates Mel-Frequency Cepstral

Coefficients (MFCCs). We extract a total of 𝑑 = 256 features.
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Next, we encode the sound features into hypervectors with a

dimension of 𝐷 . We use bipolar random projection to better utilize

the on-board memory. Formally, suppose 𝑥 is a sound clip and 𝑓 (·)
denotes the aforementioned feature extraction. The HDC encoding

can be expressed as 𝜙 (𝑋 ) = 𝑠𝑖𝑔𝑛(𝑀 × 𝑓 (𝑥)), where𝑀 is a random

matrix of shape 𝐷 × 𝑑 uniformly sampled from {−1, 1}. Note, that
each dimension of 𝜙 (𝑋 ) is bipolar (either 1 or −1) after encoding.

The main training process of SoundHD is to create class hyper-

vectors that represent the common patterns for each sound class.

This is done by combining all hypervectors from the same class

via element-wise addition. For inference on an unseen sound clip,

SoundHD performs a simple similarity check (i.e., cosine similar-

ity) between the hypervector of the new clip, and all existing class

hypervectors. The class with the highest similarity score indicates

the predicted class label.

Hypervector Compression: Thanks to the bipolar representa-

tion of hypervectors, SoundHD can be efficiently compressed to fit

smaller memory capacities. We propose a compression technique

that maps matrix element 1 to a bitwise 1, and -1 to a bitwise 0.

Each dimension of hypervectors is compressed and stored as one

bit to reduce memory footprint. Since most MCUs use a byte-based

architecture, we fit eight dimensions into one byte, achieving an 8×
compression rate. We apply this compression to the projection ma-

trix, which is the most memory-intensive component of our design.

For other components, such as class hypervectors and train/test

labels that do not require high precision, we downcast their data

type from float to char, the smallest data type supported by C.

Implementation: Existing HDC frameworks such as torch-hd [4]

are Python-based and are difficult to run on low-end MCUs based

on C. Thus, we develop an embedded HDC framework specif-

ically for memory-constrained MCUs. The overall memory us-

age of SoundHD in bytes can be estimated using the equation

(𝐶 + 𝑇×𝑃
8

+ 𝑑
8
) × 𝐷 , where 𝑇 is the total number of clip samples, 𝑃

is the proportion of train data, 𝐷 is the hypervector dimension,𝐶 is

the number of classes, and 𝑑 is the initial dimension of the extracted

features before encoding. By adjusting these parameters according

to the environment, developers can easily adapt our framework to

any MCUs with various memory capacities.

3 Experiments and Preliminary Results
Experimental Setup:We implement SoundHD on the Arm Cortex

M4-based Arduino Nano 33 BLE board [1] with 256KB SRAM and

1MB flash memory. We use two datasets, BDLib [2] and ESC-10 [6],

both sampled at 44.1 kHz. The raw audio is segmented into 0.5-

second clips with 50% overlap, followed by a 70%/30% train-test

split. To learn more generalized features, we augment the training

audios using pitch shift and time stretch. We implement feature

extraction using the Librosa library [7].

Metrics:We evaluate the accuracy of ESC, compare memory usage

and inference latency onMCUs across various methods and settings.

Preliminary Results:We compare SoundHD to the state-of-the-

art ESC model, ACDNet [5], on the ESC-10 [6] dataset. SoundHD

saves memory usage by 4× compared to ACDNet, reducing memory

requirement from 803KB to 184KB. SoundHD also significantly

reduces the inference latency from 2.7 seconds to 36 milliseconds,

showing a 75× improvement. This makes SoundHD ideal for real-

time ESC tasks on resource-constrained devices.

Figure 2: Memory usage (left) and accuracy (right) comparisons
before and after compression for BDLib [2].

Figure 3: Memory usage (left) and accuracy (right) comparisons
before and after compression for ESC-10 [6].

We evaluate the proposed compression technique by comparing

the uncompressed HDCmodel with SoundHD, as shown in Figure 2

and Figure 3. The memory comparisons indicate a significant reduc-

tion in memory usage - approximately 7× smaller than the baseline

HDC implementation - thanks to our hypervector compression al-

gorithm. Despite smaller memory footprint, our resource-efficient

implementation maintains little drops in accuracy, with less than

5% for BDLib [2] and less than 9% degradation for ESC-10 [6]. After

compression, we notice SoundHD with 𝐷 = 1000 for BDlib [2] and

𝐷 = 500 for ESC-10 [6] fit within the target MCU with minimal

accuracy degradation. Specifically, SoundHD reduces memory us-

age from 1864KB to 243KB on BDLib [2] with 𝐷 = 1000, making it

feasible for implementation on memory-constrained MCUs.

4 Discussion and Future Work
In this poster, we present SoundHD, a resource-efficient HDC frame-

work for ESC. Our results show that we save 4×memory usage and

75× inference time compared to the baseline methods. SoundHD

enables resource-efficient and real-time ESC on the edge. In fu-

ture work, we will explore the on-device training using HDC in a

dynamic and complex sound environment.
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