
1

Private and Efficient Learning with
Hyperdimensional Computing

Behnam Khaleghi*, Xiaofan Yu*, Jaeyoung Kang, Xuan Wang, Tajana Rosing, Fellow, IEEE

Abstract—Machine learning algorithms, especially deep neural
networks (DNNs), are computationally expensive and vulnerable
to privacy breaches. Hyperdimensional Computing (HDC) is
a brain-inspired machine learning paradigm which offers a
potential alternative for efficient and private learning. HDC
encodes dense, sensory inputs into sparse, high-dimensional
vectors of 10,000 bits or more, and learns using well-defined and
lightweight operations on these vectors. However, naı̈ve HDC is
vulnerable to privacy attacks as the encoding process can be
reversely determined. In this paper, we systematically study the
fundamental privacy challenges of HDC due to reversibility and
propose an end-to-end private training and inference framework
for HDC with efficient hardware implementation. We first show
that HDC is not naturally private as the original data and
encoding parameters can be reconstructed from the encoded
vector, regardless of the encoding methods applied. We term this
attack as the feature extraction attack. We then propose a locally
sparse encoding method to obfuscate the encoded information
for protecting inference privacy, leading to computational and
communication savings. We further propose Privé-HDnn which
uses a hybrid architecture of Convolutional Neural Network
(CNN) as feature extractors and private-preserved HDC classifier
for complex tasks such as image classification. Thanks to the noise
tolerance of HDC, Privé-HDnn enables private single- and multi-
pass training of HDC by differential privacy-guaranteed noise
injection. Results show that our new encoding method defends
against decoding attacks with an RMSE deviation of 0.42, while
also speeding up encoding by 2.6–5.3× (19–79×) compared to
the FPGA (CPU) baseline. For privacy-preserved training, Privé-
HDnn achieves comparable or up to 5.8% better accuracy than
DNNs with up to 1231× faster training time on GPU as compared
to the state-of-the-art NNs.

Index Terms—Privacy-Preserved Learning, Hyperdimensional
Computing.

I. INTRODUCTION

In recent years, the number and diversity of applications
benefiting from machine learning (ML) have grown signif-
icantly [1], [2]. A typical and widely used ML model is
the deep neural network (DNN). However, training DNNs
consumes vast hardware resources due to large model sizes,
substantial data requirements, and the nature of backpropaga-
tion [3], [4]. Another challenge for DNNs is preserving privacy
against various attacks, such as membership inference [5]. To
protect training privacy, existing works have utilized differen-
tial privacy (DP) [6], [7], which adds carefully designed noise
to randomize the output. However, this approach can impair
training convergence and reduce accuracy [7]. Therefore,

All authors are with the Department of Computer Science and Engi-
neering, UC San Diego, USA. Emails: {bkhaleghi, x1yu, j5kang, xuw009,
tajana}@ucsd.edu

*Both authors contributed equally to this research.

despite their outstanding learning performance, DNNs face
significant challenges in practical deployment due to resource
constraints and vulnerability to malicious attacks.

Hyperdimensional Computing (HDC) - a new brain-inspired
learning paradigm that is very lightweight to compute and
robust to hardware errors, has emerged as a potential solution.
HDC encodes raw input data to hyperspace points, represented
by vectors of thousands of bits called hypervector. HDC
achieves memorization (training) through element-wise addi-
tion of encoded vectors in an operation called bundling, where
the resulting vector has much higher similarity to the original
vectors than to any random hypervector. We can associate
two different pieces of information using an HDC operation
called binding, which involves element-wise multiplication,
producing a new hypervector that is orthogonal to the original
vectors. Simple and parallelizable coordinate-wise computa-
tion makes HDC implementations more than two orders of
magnitude energy-efficient compared to DNNs, especially with
specialized hardware like FPGAs and GPUs [8], [9]. We can
use these HDC operations to train ML models. For example,
we can train a classifier by summing the high-dimensional
vectors with the same label to create class vectors. The
encoded query can then be compared with the class vectors
using simple metrics such as Hamming distance for binary
vectors or dot product, to predict a class for the query. HDC
is well understood formally [10], and has been successfully
applied to various applications and circuit systems in recent
years [11]–[16].

However, HDC does not inherently preserve privacy. The
key procedure of HDC, encoding, is reversible and thus can
return the original data as a part of the decoding process [17],
[18]. In practical use cases, HDC-encoded models are often
exchanged between clients and servers, such as in cloud-hosted
inference [19] or federated learning [20]–[22], as shown in
Fig. 1. Despite not sharing raw data samples, there remains a
risk of eavesdroppers uncovering the encoding parameters and
subsequently accessing the raw data. While some literature
has addressed these privacy challenges of HDC and proposed
strategies for improvement [17], [18], these works have often
focused on limited types of HDC encoding, assuming the
adversary knows the encoding parameters, or only ensuring
privacy guarantees in single-pass training. In contrast, our
research aims to mitigate privacy breaches in all popular
HDC encoding methods during inference and iterative training
processes.

In this paper, we comprehensively study the reversibility
challenges of HDC and propose an end-to-end framework,
Privé-HDnn, to achieve private training and inference using

2

Fig. 1: Privé-HDnn offers three key contributions in typical cloud-client
scenarios where malicious attackers may exist within the cloud networks and
have access to the encoded hypervectors.

HDC. Fig. 1 provides an overview of Privé-HDnn in a typical
client-server scenario. We assume that malicious attackers may
reside within cloud networks and gain access to encoded HDC
hypervectors as the HDC client exchanges models with other
entities. We begin by demonstrating the reversibility challenge
in HDC, where attackers can reconstruct the original features
by applying adversarial inputs on the client, even without prior
knowledge of HDC encoding parameters. We refer to this as
the feature extraction attack. To protect privacy against the
feature extraction attack during HDC inference, we propose
locally-sparse encoding by obfuscating the information of the
transferred data to untrustworthy hosts, along with an efficient
FPGA implementation. We further present Privé-HDnn, a
framework ensuring differential private training across single-
pass and iterative scenarios. Privé-HDnn employs a pretrained
CNN as a feature extractor and a trainable HDC classifier
guided by private training techniques. Inspired from differen-
tial privacy [6], we show that the superior error tolerance of
HDC [23], [24] can be prudently leveraged to enhance the
privacy by noise/error injection.

In summary, we make the following novel contributions in
this paper:
(1) We thoroughly study the reversibility of HDC with all

common-used encoding methods. We further show that
the adversary can infer the original features using adver-
sarial inputs without prior knowledge, which we refer to
as the feature extraction attack.

(2) We propose an approximate locally-sparse encoding to
improve the HDC inference privacy, safeguarding against
the feature extraction attack. Such technique also saves
huge computational and communication costs with an
efficient FPGA implementation.

(3) We propose Privé-HDnn for privacy-preserved training
in complex HDC classification tasks, such as image
classification, using an architecture of CNN feature ex-
tractor and HDC classifier. Privé-HDnn is designed with
differentially private one-pass and iterative training.

(4) We conduct comprehensive evaluation of the proposed
techniques. The new sparse encoding method increases
the normalized RMSE between the original and decoded
data from 0.15 to 0.42, in average, while enhancing
encoding performance by up to 5.3x on FPGA and 79x
on CPU baselines. Privé-HDnn attains comparable or
superior accuracy gains of up to 5.8% against DNN-only
solutions, while drastically reducing GPU training time
by 9.2–1231× compared to state-of-the-art methods.

The rest of the paper is organized as follows: Section II

provides an overview of prior research in HDC. In Section III,
we present a thorough analysis on the decoding and feature
extraction attack to HDC encoding. In Section IV, we propose
a new approximate locally-sparse encoding method which
preserves privacy of HDC inference even if the HDC models
are exchanged with untrustworthy hosts. Section V presents a
novel differential private training framework, Privé-HDnn, for
both one-pass and iterative HDC training. Comprehensive ex-
periments are conducted and results are reported in Section VI.
Section VII concludes the paper.

II. RELATED WORK

A. HDC Designs for Privacy

SecureHD [19] appeared as one of the first works exploring
secure HDC learning in a collaborative learning setting with
an untrustworth cloud. Each client has distinct base vectors
for encoding the data, which are generated by shuffling a seed
base. The cloud has only the shuffling keys (not the bases) to
reshuffle the clients’ encoded vectors; hence, after reshuffling,
all the vectors are encoded by the same bases, and HDC
learning becomes possible. However, such obscurity does not
guarantee privacy as we show in Section III. Recent studies
have explored data encryption within cloud-based systems,
such as Homomorphic Encryption [25]–[27]. By encrypting
data locally without decryption in the cloud, users’ privacy is
guaranteed. HDC has the potential to enhance the efficiency
of these encryption techniques on local clients.

Focusing on HDC privacy on local clients, PRID [18]
proposed model inversion attack and defense techniques of the
HDC models. Given a query, PRID attempted to reconstruct
the training data by replacing a subset of input query features
(e.g., pixels of an image) with the features of the decoded class
so that the similarity score increased. To reduce information
leakage and protect HDC models, PRID used noise injection
and model quantization techniques. PP-HDC [28] proposed
a privacy-preserving inference framework using a novel hash
encoding method and multi-model inference.

The most related work is Prive-HD [17], which trained a
differential private HDC model by adding Gaussian noise to
the final model. Prive-HD assumed that trained models of adja-
cent datasets differ by only one vector (i.e., the encoded vector
of the extra record) and adjusted noise injection accordingly.
While effective for one-pass training, this approach may fail in
iterative training, where updates depend on the initial model.
Adding just one sample can alter the initial model, leading
to significant differences in subsequent updates. Furthermore,
considering only a single vector difference significantly un-
derestimates the required noise.

Our work significantly improves previous state-of-the-art
privacy-aware HDC from the following aspects: (1) We
demonstrate the reversibility of all common encoding methods
while Prive-HD [17], PRID [18] and PP-HDC [28] only
consider one specific encoding. (2) Prive-HD [17] is built
on the assumption that the adversary knows the encoding
parameters. In this work, we show how the adversary can
extract these parameters (for various encodings) without prior
knowledge by using adversarial inputs. (3) Prive-HD only

3

3

251

×

×

-1 -1 +1 -1 +1 -1 ... +1

-1 +1 +1 -1 -1 +1 ... -1

b0

bm

-18 +30 +4 +6 -40 -18 ... +9

(a)

+

+

+1 -1 -1 +1 +1 +1 ... +1

-1 -1 +1 -1 +1 -1 ... +1

⊗

+
b0

LB

+1 +1 +1 -1 +1 -1 ... -1

-1 +1 +1 -1 -1 +1 ... -1 bm

+2 -3 +1 0 -4 -8 ... +8

(b)

LW

+1 -1 -1 +1 +1 +1 ... +1

+
LB

+1 +1 +1 -1 +1 -1 ... -1

-9 +5 +4 -7 +1 -1 ... -5

LW

≪ 0

≪ m
+

(c)

+3 -4 -6 +14 -8 ...

+1 +2 -2 +6 -5 ...

0 -3 -4 +10 -9 ...

+4 -5 -12 +30 -22 ...

-2 +3 0 -4 +3 ...

-1 +2 -3 -6 +1 ...

-7 0 -2 -2 +3 ...

-10 +5 -5 -12 +7 ...

(d)

+

+

⊗

Fig. 2: (a) Random projection, (b) base-level, and (c) permutation encoding. (d) Training by bundling.

devises single-pass private HDC training, while our work
proposes single-pass and iterative differential private HDC
training with a stringent privacy budget. (4) In this work, for
the first time, we propose Privé-HDnn, a combination of CNN
feature extractor and HDC classifier for complex classification
tasks (e.g., image classification) with privacy guarantees. (5)
We also propose a novel sparse encoding methods to combat
the reversibility challenges along with a computationally and
communication efficient FPGA implementation.

B. HDC Designs for Cyber Attacks

Another body of research has studied various attacks on
HDC. Yang et al. [29] used genetic algorithms to generate
adversarial images with minimal perturbation that leads to
misclassification by the HDC model. HDTest [30] applied
random row/column mutation, shift, and noise to generate
adversarial images for HDC classification. PoisonHD [31]
aims to degrade the performance of the HDC model by
injecting false data with flipped labels. A recent study on
Hyperdimensional Data Poisoning Attacks (HDPA) [32] in-
troduced an HDC-based approach to generate adversarial
samples by perturbing within the HD space. From a hardware
perspective, HyperAttack [33] presented an efficient attacker
targeting HDC models by maliciously flipping an extremely
small number of bits within the associative memory. We refer
the readers to Ma et al. [34] for a comprehensive survey on the
robustness of HDC against cyber attacks and hardware errors.
Contrary to focusing on a specific type of attack, Privé-HDnn
addresses the broader privacy challenge posed by reversibility
in HDC and ensures differential privacy during HDC training
regardless of the encoding method.

III. REVERSIBILITY OF HDC AND THE FEATURE
EXTRACTION ATTACK

In this section, we explore the privacy challenges of using
HDC models in networked applications, as illustrated in Fig. 1.
Malicious attackers within the network can compromise pri-
vacy by merely accessing shared HDC models (i.e., class hy-
pervectors) and generating adversarial inputs on local clients.
We demonstrate that HDC encoding parameters (base vectors)
can be uncovered using adversarial inputs across all encoding
methods, a vulnerability not identified in previous work [17],
[18]. Furthermore, we reveal that every encoding method faces
a privacy risk, where the original data can be reconstructed
from the encoded vectors. We term this privacy vulnerability as
the feature extraction attack. Such finding poses a significant
privacy challenge to HDC training and inference, particularly

when the application necessitates a shared HDC model via
untrustworthy links to the server.

A. Encoding and Decoding

Figs. 2(a)-(c) illustrate the common HDC encoding tech-
niques, each of which preserves a particular distance in the
hyperspace [10] and is suitable for particular type of data [9].
We represent input samples as a d element feature vector
V = ⟨v0, v1, · · · , vd−1⟩, and we use capital D for encoded
vectors dimensionality. We use vector symbol ⃗ to represent
vectors in the hyperspace. The encoded vector is represented
as H⃗.

(1) Random projection (RP) encoding, shown in Fig. 2(a),
multiplies each feature with a D-dimensional base vector
associated with that index. B⃗ks are constant orthogonal vec-
tors called base or id vectors that are used to preserve the
spatiotemporal relations of the features. RP encoding can be
transformed to a matrix-vector multiplication by laying the d
base vectors as the columns of a D × d matrix BT .

H⃗ =

d−1∑
k=0

vk × B⃗k = BT × V. (1)

Thus, we can decode V⃗ in the following way:

(BT)† × H⃗ = (BT)† × BT × V ⇒ V ≃ (BT)† × H⃗.

Since B is non-square, we use Moore-Penrose pseudo-
inverse [35] to estimate B†.

(2) Base-level (a.k.a. id-level) encoding uses a set of high-
dimensional level vectors L⃗ to represent values, and a set
of base vectors B⃗ to identify the index of features, i.e., the
position of the pixels in Fig. 2 (b). Both the base and level
vectors have bipolar components, i.e., {+1,−1}D. The base
vectors B⃗0, ..., B⃗d−1 are generated randomly. For a total of
q level vectors, L⃗0 is generated randomly, then every L⃗k

is generated by flipping D
2q bits of L⃗k−1. Therefore, closer

features have more similar levels and vice versa; particularly,
L⃗0 · L⃗q−1 ≃ 0 (e.g., white and black pixels have the most
different level vectors). The number of level vectors is limited,
so input values are quantized to q bins to obtain the right
level of each value. Equation (2) formulates the base-level
encoding, where L⃗(vk) denotes the level vector matched by
vk. The two D-dimentional vector L⃗(vk) and B⃗k are bound
(⊗, element-wise multiplication) together, producing a vector
that is dissimilar to both.

H⃗ =

d−1∑
k=0

L⃗(vk)⊗ B⃗k. (2)

4

We can decode the base-level encoding index by index. To
obtain a feature vi, we first bind H⃗ with B⃗i so we have:

B⃗i⊗H⃗ = B⃗i⊗
d−1∑
k=0

L⃗(vk)⊗B⃗k = L⃗(vk)+
d−1∑
k=0
k ̸=i

L⃗(vk)⊗B⃗k⊗B⃗i.

Then, we try all possible level vectors L⃗x ∈ {L⃗0, ..., L⃗q−1}
on the resultant vector to find out the one with highest dot-
product:

L⃗x · (B⃗i⊗H⃗) = L⃗x · L⃗(vi) +

noise(≈0)︷ ︸︸ ︷
L⃗x ·

d−1∑
k=0
k ̸=i

L⃗(vk)⊗B⃗k⊗B⃗i . (3)

Since base vectors are random, the dot product between two
random vectors is close to zero. The expected value of the
right-hand side of the above equation is ≈ 0, and L⃗x · L⃗(vi)
becomes maximum when x = i. Once we obtained L⃗(vi), we
can infer vi from the associated level.

(3) Permutation uses a different way to preserve the spa-
tiotemporal information in time-series data [14], [36]. Instead
of using base vectors, it applies P (k) on the level vector of
each feature vk, where P (k)

(
L⃗
)

denotes circular shift of L⃗ by
k indexes. Given the pre-generated level vectors , permutation
can be formulated as follows:

H⃗ =

d−1∑
k=0

P (k)(L⃗(vk)) (4)

A graphical explanation is displayed in Fig. 2 (c).
Decoding the permuting encoding can be done in a similar

way to base-level decoding, except for the first step. Instead
of binding H⃗ by B⃗i, we permute H⃗ by −i indexes, then try
to find the L⃗x that maximizes the dot-product.

B. Feature Extraction Attack

In the previous subsection, we show how the vectors of
common encoding methods can be decoded to the original
data. To decode these vectors, one requires an understanding
of the HDC parameters, i.e., the base and/or level vectors. In-
triguingly, we showcase how these parameters can be extracted
using adversarial inputs. Unlike previous research [17], [18],
which focused only on decoding random projection encodings
and assumed prior knowledge of encoding parameters, our
work is the first to introduce various decoding techniques and
show how to extract both the parameters and the original data,
even without prior knowledge of the encoding parameters.

Our approach operates within a gray-box model, where the
input format and encoding algorithm is known, but not its
parameters. This setup enables us to manipulate the inputs and
observe the corresponding encoded outputs. Such a scenario
mirrors situations encountered in federated learning [37] and
cloud inference [19]. Note, that our approach can also decode
parameters for combined encoding methods, such as RP and
Base-Level with permutation, both of which are commonly
used in prior HDC studies [14], [36]. The proof is omitted
due to space constraints.

(1) RP feature extraction. Random projection is a simpler
encoding as it directly projects each scalar input feature by

1 1 1 – 1 –

1 – 1 – 1 –

1 – 1 – 1 1

1 – – – 1 1

1 1 – 1 – –

1 1 1 1 – 1

1 – 1 – – –

1 1 1 1

1 – 1 1

1 – 1 1

1 – – 1

x0 x1 x2 x3 x4 x5

y0 y1 y2 y3 y4 y5

z0 z1 z2 z3 z4 z5

3 1 1 – – 1

3 – 1 – – 1

3 – 1 – – –

3 – – – – –

1

1

1

1

1

1

–

–

L0

L1

L2

L3

L0
′

L1
′

L2
′

L3
′

B0

B1

B2

B0
′

B1
′

B2
′

L0
′ , L0

′ , L3
′

L0
′ , L3

′ , L3
′

L3
′ , L3

′ , L3
′
ቐ

𝑥1 + 𝑦1 − 𝑧1 =
𝑥1 − 𝑦1 − 𝑧1 =

−𝑥1 − 𝑦1 − 𝑧1 = −

(𝑥1, 𝑦1, 𝑧1) = (, ,−)

H0

H1

H2

H3

L0
′ , L0

′ , L3
′

L0
′ , L3

′ , L3
′

L3
′ , L3

′ , L3
′
ቐ

𝑥3 + 𝑦3 + 𝑧3 = −
𝑥3 + 𝑦3 + 𝑧3 = −
𝑥3 + 𝑦3 + 𝑧3 = −

(𝑥1, 𝑦1, 𝑧1) = (− ,− ,)
(𝑥1, 𝑦1, 𝑧1) = (− , ,−)
(𝑥1, 𝑦1, 𝑧1) = (,− ,−)1 1 – – 1 1 1 – 1 – 1 – – – 11 – 1

B0
′ B1

′ B2
′

1 2 3

4 5 6

8

7

Fig. 3: An example of extracting the level and base vectors.

multiplying it with the associated base vector. By feeding an
adversary input V = e(i), i.e., a null input vector except vi = 1
in Equation (1), we have:

H⃗ =

d−1∑
k=0

vk × B⃗k = 1× B⃗i +
∑
k=0
k ̸=i

0× B⃗k = B⃗i

That is, to infer the ith base B⃗i, we only need to generate
an adversary input where the ith feature is 1 and the others
are 0. The observed encoded output H⃗ is the same as B⃗i.
Our approach requires d adversary inputs to extract all d base
vectors.

(2) Base-level feature extraction. Here we deal with two
unknowns, level and base vectors. We aim to first infer
the level vectors, followed by the base vectors. We denote
the inferred level and base vectors by L⃗′ and B⃗′. Base-
level extraction does not have a unique solution, so we set
L⃗′
0 = {1}D.
To extract the level vectors, we use an adversary V = {α}d

and increase α until H⃗ =
∑d−1

k=0 L⃗(α) × B⃗k changes. Once
α falls in the next bin (L⃗1), a jth component of encoded
H⃗ changes only if the same component is different in L⃗j

0

versus L⃗j
1. As we set L⃗′

0 = {1}D, we observe the changed
components of H⃗ and set those of L⃗′

1 to −1. We keep
increasing the α to create L⃗′

2 upon the next change of H⃗,
so on and so forth.

Fig. 3 shows an example with D=6 dimensions, d=3
features/bases and m=4 levels/bins. •1 and •2 are the
original level and base vectors. In •3 , we have observed all
the m=4 encoded vectors by using inputs in the form of
V = {α, α, α}. The yellow elements show changes of H⃗ as α
increases. In •4 , we set L⃗′

0 = {1}6 and generate the rest of
the levels by comparing the H⃗1, H⃗2 and H⃗3 with H⃗0. The
inferred L⃗′ is different from L⃗ in dimensions shown in red.

After inferring the L⃗′ vectors, we create a system of
linear equation for each index, with L⃗′ and the ob-
served H⃗ as constant, and B⃗′ as variable. Fig. 3•6 shows
the equations corresponding to B⃗′1 (index 1 of bases).
We decided to use d adversary inputs in the form of
V1 = {vmin, · · · , vmin, vmax}, V2 = {vmin, · · · , vmax, vmax},
· · · , and Vd = {vmax, · · · , vmax, vmax} to assure the rows are
linearly independent. We need only d adversary inputs to solve
the linear equations, thus infer all base vectors. Fig. 3•8 shows

5

𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 = 0
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 2
𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 = 0
𝑥3 + 𝑥4 + 𝑥5 + 𝑥0 = −2
𝑥4 + 𝑥5 + 𝑥0 + 𝑥1 = 0
𝑥5 + 𝑥0 + 𝑥1 + 𝑥2 = 0

x0 x1 x2 x3 x4 x5

x0x1 x2 x3 x4 x5

x0x2 x3 x4 x5 x1

x0x3 x4 x5 x1 x2

 0 2 0 0 0

Lx

Lx

Lx

Lx

𝐿𝑥 = +1 +1 +1 𝐻 =

Fig. 4: An example of inferring an unknown level vector L⃗x in permutation
encoding by setting all four features vk to L⃗(vk) = L⃗x.

the inferred base vectors B⃗′, which are different from B⃗, but
{L⃗′, B⃗′} returns the same encoding as the original {L⃗, B⃗}.

(3) Permutation feature extraction. Similar as the base-
level case, we start with inferring the number and size (length)
of the quantization bins. We create an all-equal-features ad-
versary input V = {α}d starting with the lowest value for
α based on the application. By gradually increasing α, the
encoded vector H⃗=

∑d−1
k=0 P

(k)
(
L⃗0

)
remains the same until

α falls in the next bin (L⃗1). By continually increasing the α,
we can obtain the number and length of the bins.

Then, to extract the xth level vector, we generate an ad-
versary input in which all the features fall into the xth bin.
Suppose L⃗x={x0, · · · , xD−1} is the xth level vector that
we want to infer, where x0, ..., xD−1 are the D-dimensional
elements that are either -1 or 1. Fig. 4 shows an example
where d=4 features and D=6 dimensions. For instance, the
4th element in H⃗ is computed as H⃗4 = L⃗4

x+ L⃗5
x+ L⃗0

x+ L⃗1
x =

x4 + x5 + x0 + x1. In general, it creates a system of D
linear equations with D unknowns, where each equation has d
coefficients of 1, and the rest D−d of 0. The linear equations
have a unique solution given that the rows of the co-efficient
matrix are linearly independent. We need only one adversary
input to infer each level vector. While we assumed a typical
binding where the level vector at index k is permuted by k, our
approach works for arbitrary permutations as we will always
get a system of D linear equations.

IV. PRIVACY-PRESERVED HDC INFERENCE IN
PRIVÉ-HDNN

The reversibility of HDC encoding that we demonstrated
in Section III poses a serious privacy challenge when we
need to exchange the trained HDC model with other entities
over untrustworthy communication links, such as in cloud-
hosted inference [19] and federated learning [20]–[22]. To
protect HDC inference against the feature extraction attack,
we propose a novel locally sparse encoding technique to
obfuscate the information of encoded vectors, so that even
if the encoded vectors are exchanged with malicious hosts,
the reconstructed data is indiscernible (Section IV-A). Note,
that we can also encode the labels into vectors and use the
same technique to protect label information. Our essential idea
is to make the vectors highly sparse by keeping the most
effective elements only, while maintaining high accuracy by
leveraging the noise tolerance property of HDC [23], [24].
More concretely, each segment of the vectors is sparsified
independently, which also contributes to the compression of

TABLE I: List of important notations used in the paper.

Symbol Meaning

d Dimension of feature vector
D Dimension of the HD encoded vector
vi The ith feature in the feature vector
xi The ith dimension in the HD encoded vector
H⃗ Encoded HD vector
C⃗ Trained class vectors
B⃗k The kth base vectors during encoding
L⃗k The kth level vectors during encoding
P (k) Permutation shift by k indexes during encoding
m Sparse ratio in locally sparse encoding
n Column split of matrix in locally sparse encoding
w Number of bits to represent each HD dimension
ϵ Probability of privacy leakage
δ Probability of breaking the differential privacy
σ Noise variance
∆M Sensitivity of a randomized algorithm M
κ Encoding l2 norm limit
q Fraction of data samples in one batch
N Dataset size
L Batch size
E Number of epochs
T Number of training iterations

the simple index-based model to save communication costs
(Section IV-B). We realize the proposed technique with an
efficient hardware implementation on FPGAs (Section IV-C).
To assist understanding, important notations used in the paper
are summarized in Table I.

A. Locally Sparse Encoding

In order to mitigate the potential exposure of information
resulting from encoding through adversary links or cloud
services, we employ a sparse representation approach for HDC
without sacrificing significant accuracy. The key idea is to
leverage HDC’s tolerance to large noise levels compared to
neural networks [23], [24]. This resilience stems from HDC’s
distributed representation, where all dimensions in a hypervec-
tor contribute equally, each containing low-precision values
such as bipolar or integer components. Consequently, when
certain dimensions are zeroed out in an HDC-encoded vector,
the overall accuracy remains relatively stable. Leveraging this
insight, our design employs sparsification as a lossy compres-
sion technique that diminishes recoverable information while
maintaining accuracy and reducing communication costs.

An effective method for sparsification involves retaining the
top-k components within the encoded vector while zeroing out
the remainder. This approach is reasonable due to the higher
contribution of these components to the similarity score, as
measured by the dot-product. The top-k mechanism also aligns
with the sensory systems of numerous organisms, including the
olfactory system of fruit flies, which executes a winner-take-
all thresholding mechanism on the expanded representation of
input odors [10], [38].

Our objective revolves around achieving sparsification in a
manner that optimizes both hardware efficiency and communi-
cation efficacy. Although selecting the top k components from
the encoded vector may seem straightforward in a processor
through sorting operations, this method is irregular and not

6

encoded vector

(integer)

2m×w bits

m+w bits

m bits

locally sparse

vector (integer)

binarized locally

sparse vector

Fig. 5: Local sparsification. Darker colors indicate larger values.

efficiently executed in low-power devices [39]. Instead of
targeting the top-k percentage of components across the entire
vector, we opt for a local sparsification strategy involving the
identification of local maxima. This concept is illustrated in
Figure 5. For a designated non-sparse rate of 1

2m , we segment
the encoded vector into units comprising 2m elements. We
then replace all elements within each segment, except the
maximum one, with zeros. Alternatively, bipolar notation can
be employed, which utilizes −1’s instead of 0’s. This design
approximates the top-k component selection within a vector
without necessitating a full sorting procedure. As a result, we
bypass resource-intensive computations on low-power devices
while maintaining efficiency in implementation.

B. Communication Compression

An advantage inherent in our approach lies in the reduction
of communication overhead. As shown in Figure 5, instead of
transmitting 2m×w bits for each segment (consisting of 2m

components, each with w bits), we only require m+w bits.
This allocation consists of m bits to denote the nonzero index
and w bits for its associated value. Given that HDC encodings
exhibit compatibility with quantization [40], we can further
compress the encoding vectors to binary. In this case, only m
bits per segment are needed.

Contrastingly, conventional top-k sparsification entails ad-
ditional complexities due to the requirement of sorting to
identify the top-k elements. Moreover, log(D) bits per nonzero
component are essential to represent the index, along with a
cumulative k · w bits to record the values of nonzero com-
ponents. In binary vector scenarios, the top-k sparsification
needs log(D) bits per non-zero components. We remind the
readers that D denotes the dimension of the encoded vectors.
Note that bit reduction is independent of the underlying
encoding hardware, so communication improvement holds for
all devices.

C. Efficient FPGA Implementation

Since we are interested only in the index of the maximum
components rather than their exact values, we can use more
efficient approximate encoding methods to obtain the com-
ponents. The efficiency gain of using approximate encoding
can be realized and maximized on FPGA. For base-level
and permutation encoding methods that vastly use binary
popcount for bundling, previous work [41] used an approx-
imate binary popcounts that simplify these encoding methods
by replacing part of the sum operations with the majority

B0,3B0,0 B0,1 B0,2 B0,4 B0,5

B1,2B1,0 B1,1 B1,3 B1,4 B1,5

B2,3B2,0 B2,1 B2,2 B2,4 B2,5

B3,2B3,0 B3,1 B3,3 B3,4 B3,5

B4,3B4,0 B4,1 B4,2 B4,4 B4,5

B5,2B5,0 B5,1 B5,3 B5,4 B5,5

B6,3B6,0 B6,1 B6,2 B6,4 B6,5

B7,2B7,0 B7,1 B7,3 B7,4 B7,5

BD,2BD,0 BD,1 BD,3 BD,4 BD,5

n

d

D

f0

f1

f2

f3

f4

f5

f6

f7

fd

×

1

0

1

0

1

0

1

1

0

1

0

1

MAJ

MAJ

MAJ

2m

+

(a) (b)
Fig. 6: (a) The approximate binary popcounts in previous work [41] that
is implemented by the majority functions, suitable for sparse base-level
and permutation encoding, (b) our novel approximate locally-sparse random
projection encoding that is friendly for low-power hardware (e.g., FPGAs).

functions (Fig. 6(a)). While employing the majority function
significantly reduces FPGA resource usage by up to 80%, and
despite the approximative nature of the encoding components,
they are only suitable in the context of sparsification where
the relative value of components matters.

In contrast, here in Privé-HDnn, we focus on a novel
approximate implementation for locally-sparse random pro-
jection (RP) encoding. Fig. 6(b) shows our FPGA-friendly
implementation of the proposed sparse RP encoding. RP
involves the multiplication of the projection matrix with the
input vector, whereby the multiplication of an entire row of
the projection matrix with the input vector yields one output
component. Our key idea is to bypass some matrix elements
when generating the localized sparsified encoding output, as
outlined in Section IV-A. We split the original matrix into
partitions of 2m rows and n columns each, with 1

2m non-
sparse rate. Among these 2m rows, the output of only one of
them will be 1 and the remaining will be zeroed out. At each
step, one bit of a partition’s column is multiplied with the
corresponding feature. The partial encoding result compares
the adjacent values, which belong to adjacent rows, and allows
the maximum one to proceed to the next step. In Fig. 6(b), the
red bits are for the first step, active in all rows, while the green
bits are activated for the rows that passed to the second step.
Accordingly, m steps are needed to finalize the encoding.

We choose m ≤ n, which means that even for a row that
proceeds to till the last step, n−m bits of it still remains
unused. That is, the projection matrix is also sparse. The
sparsity pattern varies among the partitions so none of the
matrix columns is entirely zero. This approach does not require
local sorting as, at each step, adjacent outputs are compared
and the maximum index is passed to to the next steps. This
helps to realize a deterministic and hardware (e.g. FPGA)
friendly data flow.

V. DIFFERENTIAL PRIVATE HDC TRAINING IN
PRIVÉ-HDNN

Ensuring privacy in HDC training is essentially challenging,
given that data inputs are mapped onto reversible vectors. As
we showed in Section III, feature extraction can infer the en-
coding parameters using adversarial inputs across all common
encoding techniques. Previous work of Prive-HD [17] targeted

7

private iterative HDC training by post-training noise injection.
However, Prive-HD [17] only applies to one-pass training and
substantially underestimates the amount of additive noise, as
we show more details in Section V-C. In fact, post-training
noise injection is not a viable approach for iterative training.

In this section, we introduce the training design of Privé-
HDnn, which enables differentially private yet accurate HDC
classification. We start with the necessary background for
differential privacy (DP) in Section V-A. We then show how
DP can be applied to protect the data privacy of HDC for both
one-pass and iterative (multi-pass) training using state of the
art HDC encoding techniques in Section V-B and V-C. While
most classification applications have excellent accuracy when
encoding raw data into HDC vectors, our recent work showed
that for complex data like images, such as CIFAR-100 [42], we
need to use a subset of a pretrained neural network as a feature
extractor prior to HDC-based encoding and training [43]. In
order to handle complex datasets, Privé-HDnn adopts a hybrid
CNN-HDC approach to facilitate accurate classification as
well as privacy guarantees (Section V-D). Table I lists the key
notations.

A. Differential Privacy (DP)
Differential Privacy serves as a widely adopted privacy

standard across various applications [6], [17]. DP enforces
strict indistinguishability, ensuring that an algorithm does
not reveal patterns in the original data, even down to the
difference of a single record. As a robust privacy protocol, DP
effectively prevents attackers from probing the original data.
Specifically, a randomized algorithm M with domain DM
is (ϵ, δ)-differentially private if for any two adjacent datasets
D,D−1∈DM that differ in one record (an input sample), for
all output subset S of M the following holds [6]:

Pr[M(D) ∈ S] ≤ eϵPr[M(D−1) ∈ S] + δ, (5)

which means that observing D after D−1 increases the
probability of an event by no more than eϵ. The additive term δ
allows breaking the DP by a probability of δ, which is usually
selected to be smaller than 1

|D| .
A common approach to satisfy DP is applying a Gaussian

noise proportional to the sensitivity of the algorithm, defined
as the maximum amount of change of the output if the input
differs in one element. For Gaussian noise, we use ℓ2 norm
for sensitivity, i.e., ∆M = ∥M(D)−M(D−1)∥2. Thus,

MDP (D) =M(D) +N (0,∆M·σ), (6)

in which ∆M·σ is the standard deviation of the noise. For
a fixed δ and a privacy target ϵ, the parameter σ can be
obtained to satisfy δ ≥ 4

5e
− (σϵ)2

2 [6]. A smaller ϵ or δ (i.e.,
less likelihood of leakage) demands larger noise parameter σ.

B. Private One-pass Training

Suppose H⃗i and yi are the encoded vectors and true label
of the ith sample. One-pass HDC training simply accumulates
the encoded vectors of the same label to form class vectors,
as visualized in Fig. 2 (d) and as follows:

C⃗j =
∑

i s.t.yi=j

H⃗i (7)

When a raw input V is discarded from the dataset, only one
of the class vectors is affected, where C⃗−1 = C⃗ − H⃗(V). Thus,
the sensitivity of one-pass model is ∆M = ∥ H⃗(V)∥2. This
is a valuable property as it shows the sensitivity of one-pass
training does not depend on the dataset size. We can train a
one-pass HDC model on arbitrary datasets and add a noise
based on ∆Mmax , which is independent of the encoding and
the dataset. For inference, suppose C⃗ are the original class
vectors while C⃗′ are class vectors with additive noise N⃗ , we
will predict the class ỹ as:

ỹ=argmax
i∈C

C⃗′i·H⃗ = argmax
i∈C

C⃗i·H⃗+ N⃗ ·H⃗ (8)

A large noise can impact the value of N⃗ ·H⃗ and
change the scores rank. Each encoded component H⃗j belongs
to [−d, d] (with vmax =1). This implies a sensitivity of
∆Mmax

= d
√
D that demands a significant amount of noise

N
(
µ=0, σ=

∆Mmax

ϵ

√
2 log(1.25δ)

)
which can be as large as

the class values themselves. This is because DP considers the
worst case of H⃗ where the components are {±d}.

To solve this issue, we need to ensure that H⃗ does not
exceed an expected bound, so we can use a smaller noise in
accordance. Thus, we normalize and clip the encoded vectors
by H⃗′ = H⃗/max(1, ∥H⃗∥2

κ) which ensures ∥H⃗′ ∥2 ≤κ. By
choosing, e.g., κ=1, we achieve ∆Mmax

=1 which shrinks
the variance of noise. By normalizing the encoded vectors,
the values of class vectors also scale accordingly. Therefore,
normalization alone cannot mitigate the impact of noise.
Clipping bounds the values and helps avoid the worst-case
scenario of paying extra sensitivity (∆M) cost.

C. Private Iterative Training

Iterative (multi-pass) HDC training improves the HDC
accuracy by evaluating the model on the training data. In
case of wrong prediction, the encoded vector is subtracted
from the mispredicted class to make them less similar, and
is added to the expected class once again. Let C⃗f represent
the mispredicted class vector, and C⃗t denote the ground-truth
class vector. The iterative training operations for an incorrectly
predicted sample H⃗ are outlined below.

C⃗f = C⃗f − H⃗,

C⃗t = C⃗t + H⃗,
(9)

Privacy of iterative training cannot simply be obtained by
finding the sensitivity and adding the post-training noise. In
iterative training, a discarded or extra input affects the model
updates in the subsequent epochs. Normalizing the encoded
vectors guarantees ∆Mmax = ∥H⃗∥2 ≤κ for one-pass learning,
but it does not hold for iterative training. The work in [17] was
built on this assumption. For the datasets of Section VI, after
normalizing the vectors to ∆Mmax

= ∥ H⃗∥2 ≤ 1, we observe
that excluding only one input makes ∆M of [∼20−43] which
makes the required noise σ intractable.

To address this challenge and realize differentially pri-
vate multi-pass training, we propose to use the composition
property of DP: a mechanism with a series of ϵi-private
steps is

∑
ϵi-differentially private [44]. Thus, we can preserve

privacy at the batch level, where the total privacy cost of

8

Algorithm 1 Differentially private iterative HDC training

Inputs: Dataset D = {V⃗1, · · · V⃗N}, batch size L, noise variance
σ2, encoding l2 norm limit κ

Output: Class vectors C⃗ = {C⃗1, · · · C⃗C}
1: H⃗D ← enc(D) // encode the train data
2: C⃗ ← 0
3: for t in [1 :T] do
4: G⃗[1 :C] = {0}D // initialize class update vectors per iteration
5: Lt ← random select(H⃗D , L) // L=1 in normal training
6: for H⃗ in Lt do
7: ℓ = argmaxi C⃗i·H⃗ // inference on the train sample
8: if ℓ ̸= ℓH then
9: H⃗′ ← H⃗/max(1,

√
2 ∥H⃗∥2

κ
) // bound the sensitivity

10: G⃗[ℓ]← G⃗[ℓ]− H⃗′ // subtract from mispredicted class ℓ
11: G⃗[ℓH]← G⃗[ℓH] + H⃗′ // add to the golden class ℓH
12: end if
13: end for
14: G⃗ ← G⃗/L+ N⃗ (0, κ·σ) // average the updates and add noise
15: C⃗ ← C⃗ + G⃗ // update the classes
16: end for
17: return C⃗

training is the total cost of the batches and the total amount
of required noise is smaller. This new design involves the
injection of additive noise during each epoch, allowing the
model to simultaneously undergo fine-tuning in response to
the introduced noise. Specifically, if the training is divided into
batches of L= qN randomly selected samples (for N being
the dataset size), following the privacy amplification theorem,
each iteration is (qϵ, qδ)-private with respect to the whole
dataset [6], [45]. For T training iteration (E= q×T epochs),
existing DP theory [6] provides a tighter bound of (qϵ

√
T , δ)

on privacy of the composite model with the following additive
noise:

σ ≥ c
q

ϵ

√
T ln(1/δ) (10)

Algorithm 1 details the proposed private iterative learning
for HDC. The lines with comments in red are exclusive to
private training. During each of the T training iterations, a
random batch of encoded data is selected (line 5). Similar
to DNN training, a forward inference pass is run over the
batch (lines 6–7). For the data with mispredicted labels (line
8), the normalized vectors are saved (similar to gradients of
different samples in neural networks) and averaged followed
by noise injection (line 14). The algorithm is fairly similar
to normal HDC training, except that the updates are made
per batch for L samples, as opposed to per sample, and
the encoded vectors are normalized to bound the worst-case
sensitivity as discussed in subsection V-B. Our new design
enables differential private iterative HDC training which has
not been addressed in previous work [17].

D. Private HDC Classification on Complex Datasets

HDC achieves poor accuracy for complex image datasets
when using state of the art HDC encoding directly on the
raw image data. A way to resolve this issue is to train a
Convolutional Neural Network (CNN)-based feature extractor
and use HDC for classification over the extracted features [20],
[43]. The hybrid architecture is called HDnn. The conventional

C
o

n
v

3
C

o
n

v
3

C
o

n
v

4
C

o
n

v
4

P
o

o
lin

g
P

o
o

lin
g

FCFC

So
ft

m
ax

So
ft

m
ax

C
o

n
v

1
C

o
n

v
1

C
o

n
v

2
C

o
n

v
2

P
o

o
lin

g
P

o
o

lin
g

C
o

n
v

1

C
o

n
v

2

P
o

o
lin

g

encode

class vectors

noise

Fig. 7: Privé-HDnn for private training on complex datasets such as images. A
shallow CNN extracts the features (only once) as raw inputs for HDC, which
performs private training according to Algorithm 1. A random projection
encoder is used for HDC.

HDnn flow consists of (i) extracting image features using a
subset of a pretrained CNN, (ii) training an HDC model over
the extracted features, and (iii) attaching the trained HDC to
the CNN and finetuning the CNN to compensate potential
accuracy loss. HDnn offers other advantages such as few-shot
learning [16] due to the capability of HDC in learning from
fewer data, and more straightforward in-field learning as only
the HDC head needs to be updated.

In Privé-HDnn, we leverage the HDnn structure for private
learning on complex datasets like images, as shown in Fig. 7.
A major issue with CNNs is their intolerance to additive noise
due to the highly sensitive training process using gradient
descent. Previous studies on privacy-preserving training of
CNNs have shown low accuracy, e.g. 72% on CIFAR-10 [46].
Some of the previous works use simple networks and even
keep some of the layers fixed [6]. We bypass the noise
intolerance of CNNs by using transfer learning over a public
dataset from a different distribution. That is, we keep the pre-
trained CNN feature extractor unchanged in Privé-HDnn. We
do not finetune it on the target dataset after attaching the HDC.
Hence, it acts as a constant function and we do not need to
add noise on the CNN part as it does not learn nor expose
any information of the target dataset. In other words, the CNN
feature extractor retains its exact functionality.

On the other hand, the HDC classifier head is trained on
the extracted features of the target dataset with differential
privacy using the proposed iterative method of Algorithm 1.
The extracted features act as raw data for HDC algorithm and
are fed to a random projection encoder. With Privé-HDnn, the
features (i.e., the outputs of CNN) are secure, thus the original
data that generates those features is also protected.

VI. EVALUATION

A. Experimental Setup

(1) Benchmarks: We use standard domain benchmarks
to evaluate privacy training and inference: FACE detection
with face versus non-face labels [47], UCIHAR user activity
recognition using smartphone (five activities such as sitting,
standing, etc.) [48], PAMAP2 physical activity monitoring using
inertial measurement and heart rate monitor (12 activities such
as cycling, running, etc.) [49], and ISOLET voice of English
alphabet recognition [50]. We also use MNIST [51], CIFAR-
10 [52] and CIFAR-100 [52] images to evaluate Privé-HDnn
that requires a pre-trained CNN feature extractor. We would
like to emphasize that HDnn, the combination of HDC and
CNNs achieves the same or better performance compared to
DNNs [43] in non-private setting. However, private training is
more challenging because one also needs to safeguard against
potential privacy breach. For example, previous DNN studies

9

PSNR = 296 PSNR = 18.0 PSNR = 12.1

PSNR = 291 PSNR = 11.0 PSNR = 7.0

(a) Original data (b) RP (c) Permutation (d) Base-level
Fig. 8: Examples of decoded data from MNIST and CIFAR-10 under different
encodings.

have demonstrated lower accuracies, such as a mere 72% on
CIFAR-10 [46].

(2) Implementation: We implement Privé-HDnn with
Python 3.9 running on a Linux machine with an Intel Core
i7-12700 CPU. We use accuracy, decoding RMSE, and error
resiliency as major performance metrics. Note, that all datasets
are normalized to [0, 1], thereby bounding the RMSE values
within [0, 1]. If not specified otherwise, we utilize an HD
dimension of D = 5000.

To evaluate the efficiency of the proposed locally sparse
encoding, we accelerate it on a Xilinx Kintex-7 KC705 FPGA
Kit, where we estimated the power using Xilinx Power Estima-
tor (XPE) [53]. For CPU, we estimate the power consumption
using CPU Energy Meter [54]. For the case study of Privé-
HDnn, in addition to CPU implementation, we use a CUDA
implementation on NVIDIA’s GTX 1080 Ti GPU for a fair
comparison of its training time with previous DNN works
as they mainly use GPUs. We emphasize that efficient HDC
libraries can support implementation on specific hardware,
such as F5-HD [55] for FPGAs, OpenHD [56] for GPUs and
HDCC [57] for CPUs.

In Privé-HDnn, we use ResNet-18 or ResNet-50 net-
work [58] pretrained on ILSVRC 2012 dataset [59] as the
constant feature extractor. For privacy purposes, we do not
finetune the public model after attaching the HDC head in
place of the last layers. Note, that Privé-HDnn is a general
private learning methodology, thus ResNet can be replaced by
any pretrained feature extractor identified by the user.

(3) Baselines: For decoding performances, we compare with
the state-of-the-art HDC privacy works, Prive-HD [17] and
PRID [18] in terms of HDC reconstruction error.

B. Feature Extraction Attack Performance

In Section III, we provide a list of new decoding methods
(i.e., feature extraction attack) to decode HDC model and
reconstruct the original data, showing that HDC models are
reversible across all major encoding methods. This implies
significant privacy challenges to HDC training. To visualize
the proposed attack, Fig. 8 shows decoded examples of a
handwritten digit from MNIST and a car image from CIFAR-
10 under different encoding techniques. The reconstructed
images closely resemble the original data, confirming the
effectiveness of our proposed attack. Particularly, the proposed
feature extraction attack proves more effective on simpler
datasets; for instance, MNIST is easier to reconstruct than

0.00

0.05

0.10

0.15

0.20

0.25

FACE ISOLET MNIST PAMAP2 UCIHAR

R
o

o
t

M
ea

n
 S

q
u

ar
e

E
rr

o
r

RP (proposed) RP ([16]) permutation base-level

Fig. 9: RMSE between the original and the decoded data for different
encodings (RP, base-level, permutation) along with comparison with analytical
RP decoding of [17]. Our method of RP decoding perfectly reconstructs the
original data and achieves an average RMSE of ≈ 0 among all benchmarks.

CIFAR-10. Among the three encoding methods, RP exhibits
the least privacy and the highest reconstruction similarity,
while permutation and base-level present greater difficulty
in reconstruction, attributed to the complexities involved in
solving linear equations.

Root Mean Square Error (RMSE): To assess the effi-
cacy of our feature extraction attack, we measure the RMSE
between the original and decoded samples across all inves-
tigated encoding methods (RP, base-level, permutation). All
RMSEs are bounded by [0, 1] thus are comparable. A lower
RMSE indicates a closer resemblance between the decoded
and original samples, signifying a more successful attack.
Additionally, a comparison is drawn with the state-of-the-art
RP decoding technique from earlier research [17]. Our method
of decoding random projection (RP) exactly reconstructs the
original data with an average RMSE of approximately 0, while
prior work [17] uses an analytical approach to decode the
RP and achieves an average RMSE of 0.09. PRID [18] also
decodes RP encoding and reports a PSNR of ≈51 dB for
MNIST, whereas our approach achieves an average PSNR of
≈250 dB.

The average RMSE of decoding the permutation and base-
level is relatively higher, i.e., 0.126 and 0.164 respectively.
The higher RMSE of these methods compared to RP de-
coding is mainly due to the noise term in Equation (3) that
affects finding the right L⃗x that achieves the maximum score.
However, even with an RMSE of 0.23 for MNIST base-level
decoding, which is the highest RMSE among benchmarks,
the constructed image is still recognizable. The quality of
decoding is determined by the scale of the noise term in
Equation (3), which is directly related to the number of
features (d in Equation (3)). UCIHAR has the least number of
features per sample (d=27), so its decoding achieves a small
RMSE of < 0.02. The other datasets have 561 to 784 features,
and thus they have larger RMSEs.

C. Inference Privacy

We evaluate the impact of the locally sparse encoding which
aims at preserving the privacy during HDC inference. In the
previous subsection we observed that RP encoding exhibits
the highest exposure of data. Thus, for brevity, we focus
on the results of obfuscating the RP encoding. Fig. 10
illustrates reconstructed examples of a sinusoidal wave, a
handwritten digit (from MNIST), and a car image (from
CIFAR-10) following locally sparse encoding, exemplifying

10

Original
m = 3

(87.5%)
m = 4

(93.7%)
m = 5

(96.8%)
m = 6

(98.4%)

m = 3Original m = 4 m = 5

Fig. 10: Examples of decoding the sparse vectors of RP encoding on a sinsoid
wave, MNIST and CIFAR-10.
TABLE II: Accuracy and decoding RMSE for locally sparse encoding. The
RMSE serves as a measure of the effectiveness of the feature extraction attack,
with a higher RMSE indicating stronger privacy protection.

Sparsity
FACE
(95%)

UCIHAR
(95%)

PAMAP2
(94.5%)

ISOLET
(94%)

MNIST
(95.5%)

87.5% (m = 3) -0.3% 0.0% -0.1% -0.2% -0.1%
93.7% (m = 4) -1.1% -1.6% -1.7% -1.3% -2.2%
96.8% (m = 5) -2% -2.9% -5.5% -3.0% -7%
98.4% (m = 6) -3.3% -20.0% -10.0% -5.8% -9.5%

RMSE 0.173–0.184 0.282–0.346 0.72–0.735 0.616–0.624 0.316–0.332

the raw information leakage during the feature extraction
attack. In simpler data samples like the sinusoidal wave and
handwritten digit, reconstruction becomes increasingly diffi-
cult as higher sparsity (larger m) is enforced during encoding.
The more complex dataset CIFAR-10 makes reconstruction
nearly impossible after sparse encoding. Quantitatively, the
average PSNR among all the inputs drops below 12 dB, and
RMSE of the sinusoidal wave increases to 0.7 (versus ∼ 0
of original RP). These results collectively demonstrate that
our proposed sparse encoding technique substantially improves
privacy and provides robust protection against the feature
extraction attack.

RMSE and accuracy trade-off: Table II summarizes the
accuracy of benchmarks for different local sparsity rates,
where, e.g., m=4 means only one dimension out of 24 =16
consecutive dimensions remains one, so the sparsity rate is
1− 1

16 =93.7%. The first row of the table reports the baseline
non-sparse accuracy (e.g., 95.0% for FACE). Increasing the
sparsity ratio improves computational efficiency and enhances
privacy, albeit at the expense of accuracy. However, thanks to
HDC’s noise resilience property, the decrease in accuracy is
modest: the average accuracy loss of m=3 (m=4) is only
0.14% (1.6%) among all benchmarks.

The last row of the Table II reports the RMSE range of
the decoded benchmarks, while the detailed RMSE on three
of the datasets are plotted in Fig. 11. Without sparsification,
the RMSEs of all decoded benchmarks are ∼ 0 as discussed in
the previous subsection. As reported in Table II and Fig. 11,
when m=3, a marginal accuracy decrease of merely 0.14%
leads to an elevation of the RMSE to 0.421. This implies that
the extracted features deviate by 0.421 on average from their
original values, with features constrained between 0 and 1.
Increasing m further amplifies the RMSE, signifying a greater
deviation during reconstruction and thus better preservation of
privacy. Therefore, our locally sparse encoding successfully

Fig. 11: The RMSE between the original and decoded samples (via feature
extraction attack) under various sparsity rates of m.

1E+0

1E+2

1E+4

1E+6

1E+8

m=3 (87.5%) m=4 (93.7%) m=5 (96.8%) m=6 (98.4%)

E
n
co

d
in

g
/s

ec
o
n
d

Sparsity

UCIHAR (sparse) MNIST (sparse) UCIHAR (normal)

MNIST (normal) UCIHAR (CPU) MNIST (CPU)

(a) Encoding performance

1E+0

1E+2

1E+4

1E+6

m=3 (87.5%) m=4 (93.7%) m=5 (96.8%) m=6 (98.4%)

E
n

er
g
y
/e

n
co

d
in

g
 (

n
J)

Sparsity

UCIHAR (sparse) MNIST (sparse) UCIHAR (normal)

MNIST (normal) UCIHAR (CPU) MNIST (CPU)

(b) Energy consumption
Fig. 12: Comparing the encoding performance of the approximate locally
sparse encoding (FPGA) versus normal encoding on FPGA and CPU.

obfuscate the HDC encoded vectors, protecting the inference
privacy against decoding attacks, while sacrificing negligible
accuracy. Such result is notable especially when the features
are independent measurements such as a vector of temperature,
heart rate, and inertial measurements (as in PAMAP2), so the
exact values cannot be recovered.

D. Inference Efficiency and Error Resiliency

(1) FPGA performance: Fig. 12 (a) compares the encoding
performance of the approximate locally sparse encoding im-
plemented on FPGA versus normal (non-sparse) encoding on
FPGA and CPU. We use D=4K and n=2m (n determines
the matrix sparsity; see Fig. 6(b)). Note that the performance
of non-sparse models is constant for different sparsity levels.
We choose UCIHAR and MNIST as these benchmarks contain
the least and highest number of features respectively.

The sparse FPGA implementation of MNIST has yielded
a performance increase of 2.6× (5.3×) when compared to
the non-sparse FPGA, at sparsity levels of m=3 (m=6).
Similarly, for UCIHAR, the performance gains range from 2.1×
(m=3) to 4.3× (m=6). This variation is somewhat less
pronounced in the case of UCIHAR due to its fewer features,
which leads to a slightly reduced savings due to the control
overhead.

Compared to the CPU implementation, our sparse FPGA
approach showcases a performance boost of 38× (m=3) to
79× (m=6) for UCIHAR, and 19× (m=3) to 37× (m=6)
for MNIST dataset. The greater FPGA enhancements observed

11

TABLE III: Execution time (ms) for decoding

Benchmark RP Permutation Base-Level
FACE 0.015 0.86 1.58
ISOLET 0.015 1.14 1.49
MNIST 0.019 1.32 1.99
PAMAP2 0.013 1.06 1.38
UCIHAR 0.002 0.09 1.01

TABLE IV: Communication bit reduction.

Encoding m = 3 (87.5%) m = 4 (93.7%) m = 5 (96.8%) m = 6 (98.4%)
Local Sparsity 63% 75% 84% 91%
Top-k 0% 25% 63% 81%

in UCIHAR can be attributed to its smaller number of features,
magnifying the influence of costly data movement in CPU.

Table III reports the execution time in milliseconds for
decoding each input sample. In the case of RP decoding,
each feature requires D multiplications, resulting in an average
decoding time of 0.013 mSec per input sample. On the other
hand, both permutation and base-level encodings involve D×L
multiplications (with L denoting the number of levels), yet
the decoding process for these methods remains efficient,
taking 0.90 mSec for permutation and 1.49 mSec for base-level
encoding.

(2) FPGA energy: Fig. 12 (b) compares the energy
consumption of the proposed approximate sparse encoding
(FPGA) with the non-sparse FPGA and CPU encoding. Since
the power consumption of the sparse and normal FPGA
implementation is similar (8W for UCIHAR and 10W for
MNIST), the energy saving of sparse implementation over the
non-sparse FPGA is similar to the speedup numbers, e.g., 2.6×
(5.3×) with m=3 (m=6) sparsity level for MNIST. CPU
consumes 60W for UCIHAR and 85W for MNIST. Accordingly,
the proposed sparse FPGA implementation achieves 289×
(m=3) to 590× (m=6) higher performance for UCIHAR, and
157× (m=3) to 315× (m=6) for MNIST, compared to the
CPU implementation.

Trade-offs between Accuracy and Efficiency: Table II and
Fig. 8 show the accuracy and computational efficiency under
locally sparse encoding, with sparsity rates from m = 3 to
6. In practice, the sparsity rates act as a knob to control the
trade-offs between accuracy and efficiency. A higher sparse
ratio results in faster encoding speed but at the cost of slighted
degraded accuracy.

(3) Communication efficiency: The conservation of data
communication energy depends on the transmission dis-
tance [60]. Nevertheless, due to the linear correlation between
transfer energy and the number of bits, we can estimate the
transmission energy based on the quantity of transmitted bits.

Table IV reports the communication bit reduction achieved
through the proposed local sparsity approach, comparing it
against the top-k method which demands logD bits for each
non-zero component, as elucidated in Section IV-B, where
D= 4000 in this setting. With m=3 (corresponding to 87%
sparsity), the transmit energy experiences a 62% reduction
(compared to 0% reduction in the case of top-k). This re-
duction further escalates to 91% for m=6. It is worth noting
that for m=3, representing the encoded vector of the top-k
method along with its index information leads to an increase
in the number of bits when contrasted with a simple binary
representation. Consequently, for m=3, the top-k method

-10%

-8%

-6%

-4%

-2%

0%

0% 2% 4% 6% 8% 10% 12% 14%

A
cc

u
ra

cy
 l

o
ss

Bit error rate

FACE (normal) ISOLET (normal)

FACE (sparse) ISOLET (sparse)

Fig. 13: Impact of bit error on the accuracy of conventional and sparse
encoding. D= 4000 for both datasets.

transmits the information in its original format, resulting in
a compression rate of 0%.

(4) Error resiliency. In the context of normal HDC encod-
ing, there is an equal expectation of zeros and ones within
the encoded components. Conversely, in sparse encoding, the
majority of bits take on the value of zero. Consequently, a bit-
flip that toggles encoded components from zero to one, and
vice versa, exerts a more substantial influence on the similarity
(dot-product) outcome. Fig. 13 compares the impact of bit
error on the accuracy of models using the conventional non-
sparse and locally sparse encodings. This analysis considers
bit errors on the final encoded vectors, so the result is
independent of the underlying hardware. Such errors could
stem from hardware-related issues, such as emerging memory
cell anomalies [61], or communication bit errors. We adopt the
communication error model outlined in [24], which involves
the adjustment of parameters within the WiFi protocol stack
(802.11n). Additionally, the model alters the distance between
the transmitter and receiver, gathering signal-to-noise ratio
(SNR) data via the Friis propagation loss model.

We show the results on FACE and ISOLET datasets that
have the smallest and largest number of classes, respectively.
From Fig. 13, we can see that while normal encoding exhibits
slightly better robustness than using sparse encoding, sparse
encoding equally demonstrates remarkable error robustness.
With 2% bit error rate (equivalent to 180 meter-distant trans-
fer), the average accuracy loss of sparse encoding is 0.77%
(versus 0.30% of normal encoding). With ∼6.5% bit error
(250 meter distance), the accuracy loss is 2.37% (versus 1.32%
of normal encoding). At these error rates, the accuracy of
conventional ML algorithms such as logistic regression and
support vector machine drops to zero (random) [24].

E. One-pass Training Privacy

In Section V, we propose differentially private one-pass and
iterative training in Privé-HDnn. Fig. 14 shows the results
of private one-pass training. We set δ=10−5 (< 1

|D| for all
datasets) and use D=4K dimensions. At we feed more train-
ing data, we evaluate the accuracy using the entire test set for
inference. The shown results are the average of 20 runs. The
dashed curve (labeled iterative) shows the ultimate accuracy
of non-private iterative HDC training, which indicates the
accuracy upper bound for all private training approaches. The
green curve (labeled one-pass) shows the typical non-private
non-pass HDC training which achieves 87.4% accuracy on
average (−6.8% versus non-private iterative training). The
sharp spike of one-pass learning curves demonstrates the fast

12

0%

20%

40%

60%

80%

100%

0 4 8 12 16 20

A
cc

u
ra

cy

Train data (×103)

iterative one-pass
one-pass (ε=1) one-pass (ε=1/4)

w/o clipping (ε=10)

0%

20%

40%

60%

80%

100%

0 4 8 12 16

A
cc

u
ra

cy

Train data (×103)

iterative one-pass
one-pass (ε=1) one-pass (ε=1/2)

w/o clipping (ε=5)

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6

A
cc

u
ra

cy

Train data (×103)

iterative one-pass
one-pass (ε=3) one-pass (ε=1)

w/o clipping (ε=10)

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6

A
cc

u
ra

cy

Train data (×103)

iterative one-pass
one-pass (ε=3) one-pass (ε=1)

w/o clipping (ε=10)

(a) FACE detection (b) UCIHAR activity recognition (c) PAMAP2 physical activity recog. (d) ISOLET speech recognition
Fig. 14: Accuracy of differentially private one-pass HDC training (δ=10−5, D=4000).

0.00

0.25

0.50

0.75

1.00

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35

ε
fa

ct
or

A
cc

ur
ac

y

Epoch

non-private ε=1 ε=4 ε factor

0.00

0.25

0.50

0.75

1.00

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35 40

ε
fa

ct
or

A
cc

ur
ac

y
Epoch

non-private ε=1 ε=4 ε factor

0.00

0.25

0.50

0.75

1.00

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25

ε
fa

ct
or

A
cc

ur
ac

y

Epoch

non-private ε=1 ε=8 ε=2+6 ε factor

(a) FACE detection (b) UCIHAR activity recognition (c) PAMAP2 physical activity recognition
Fig. 15: Accuracy of differentially private iterative HDC training (δ = 10−5, D = 4,000).

learning capability of HDC from limited data. Specifically, in
FACE and UCIHAR, one-pass learning reaches close-to-optimal
accuracy by learning from only 2% of the data.

The private one-pass training on FACE and UCIHAR bench-
marks yields the same accuracy of non-private one-pass with
ϵ=1 which is a tight privacy constraint. We remind the readers
that, as shown in Equation (6), ϵ indicates the likelihood
of privacy leakage. A smaller value of ϵ corresponds to a
stronger the privacy guarantee, requiring a greater magnitude
of Gaussian noise (indicated by a larger noise parameter σ)
to attain this level of privacy preservation, in accordance with
the principles of differential privacy theory [6]. In Fig. 14,
FACE can obtain the non-private one-pass training accuracy
with ϵ= 1

4 as well, though requiring more training data, while
UCIHAR could not converge with ϵ= 1

2 . This can be attributed
to the fact that FACE has more data and fewer labels (two
labels versus five as in UCIHAR) which makes it more resilient
to noise. The magnitude of noise for one-pass learning depends
on the sensitivity, ∥H⃗∥2, which is independent of the dataset
size. Since the size of the dataset affects the scale of class
vectors, with more vector accumulation in datasets with more
samples, the C⃗i·H⃗ score in Equation (8) grows versus the
noise term N⃗ ·H⃗ in larger datasets. As a result, the other
two benchmarks PAMAP2 and ISOLET, each featuring 12 and
26 classes, yet possessing a smaller training dataset, could
converge to their maximum accuracy at larger ϵ=3 (less
noise).

In Section V-B, we propose to normalize and clip the
vectors to reduce the HDC sensitivity, and consequently, the
amount of noise. The “w/o clipping” curves of Fig. 14 display
the accuracy of private learning without normalization and
clipping. Accordingly, only a lower level of privacy (ϵ=5 or
ϵ=10) could be attained, accompanied by a 32.7% decrease
in accuracy compared to the results obtained from one-pass
private training, which benefits from the normalization and
clipping approaches.

F. Iterative Training Privacy
Fig. 15 compares the accuracy of the benchmarks trained

with our new differentially private iterative HDC training pro-

cedure in Privé-HDnn. With ϵ=1 (ϵ=4), private FACE bench-
mark achieves 91.1% (92.2%) accuracy, which is 2.5% (3.6%)
higher than one-pass training. Such outcome verifies that
our iterative training design effectively unleashes the power
of iterative training without violating the privacy bounds.
Likewise, private UCIHAR attains a 1.8% (3.5%) advantage in
accuracy over the one-pass approach. It is worth highlighting
that, at ϵ=4, the differentially private UCIHAR exhibits a mere
1% decline in accuracy compared to its non-private counter-
part. On the other hand, PAMAP2 presents a distinct scenario
with its greater number of classes and reduced training data.
As a result, even with ϵ=8 (smaller noise), it achieves an
accuracy of 82%, exhibiting only marginal improvement over
the one-pass private training scenario. This outcome mirrors
the same observation made in the one-pass training – the
disparity between similarity score (C⃗i·H⃗) and noise (N⃗ ·H⃗)
is enlarged by the limited training set of PAMAP2. Notably,
the greater number of classes within PAMAP2 exacerbates the
impact of noise, as the increased class count contributes to
a reduction in the margin between the class vectors. For a
quick verification, we first train a one-pass private model with
ϵ=2 on PAMAP2 for a faster initial convergence, followed by
an iterative training process with ϵ=6. The resultant model
(ϵ = 2 + 6 in Fig. 15) obtains 3% higher accuracy compared
to the ϵ=8 iterative training from scratch.

To fulfill Equation (10) for a given target (ϵ, δ), various
combinations of σ, q, and T can be employed. Opting for
a smaller noise parameter σ can yield enhanced accuracy
within fewer training epochs. Therefore, we set T = 16× 104

and q = 0.1√
T

, a configuration that results in a unique and
small σmin to satisfy the (ϵ, δ) requirements. Also, as training
progresses, the total number of epochs (E= q×T) signifies
the point at which the privacy objective ϵ is attained. The
ϵ factor curve in Fig. 15 (the secondary Y-axis) indicates the
ϵ value at each epoch. Notably, privacy becomes tighter before
reaching the final epoch, albeit at the cost of lower accuracy.
For instance, in Fig. 15 (a), at the 10th epoch, the ϵ factor
is approximately 0.5, implying that the green curve setting
(ultimately achieving ϵ=4) could have achieved a preferable
ϵ of 2 if the training had terminated at that point.

13

Fig. 16: Private training on images with Privé-HDnn.

TABLE V: Training time (minutes) of Privé-HDnn versus previous studies.

Dataset Privé-HDnn
GPU

Privé-HDnn
CPU

[6]
(low)

[6]
(high)

[46]
(low)

[46]
(high)

MNIST 1.1 (1.0×) 15.73 (14.3×) 12 (9.2×) 533 (410×) 28 (22×) 160 (123×)
CIFAR-10 1.2 (1.0×) 10.43 (8.69×) 40 (31×) 467 (359×) 280 (215×) 1600 (1231×)
CIFAR-100 4.3 (1.0×) 34.0 (7.92×) - - - -

G. Case Study: Image Classification

(1) Accuracy: Figure 16 illustrates the accuracy outcomes
of both the baseline non-private HDnn and Privé-HDnn models
when evaluated on the MNIST, CIFAR-10 and CIFAR-100
datasets. The non-private HDnn model attains accuracy rates
of 97.8% for MNIST and 87.0% for CIFAR-10. It is important
to mention that the baseline HDnn model employed in this
context utilizes a ResNet-18 (for MNIST and CIFAR-10) and
ResNet-50 (for CIFAR-100) network that was pretrained on the
ILSVRC 2012 dataset as its feature extractor. However, it was
not fine-tuned specifically for the target MNIST and CIFAR

datasets. Consequently, this approach results in an accuracy
decrease when compared to a fine-tuned HDnn model (which
otherwise achieves accuracy comparable to or exceeding that
of DNN [43]) or a baseline ResNet-18 model. The non-private
training achieves 99%, 90% and 66% of accuracy on MNIST,
CIFAR-10 and CIFAR-100, after 40 epochs.

With ϵ=2, Privé-HDnn achieves 90.6% on MNIST.
In previous works [46], [62], the accuracy numbers for
for differentially-private MNIST DNNs vary, ranging from
90% [62] to 98.1% [46] (with ϵ=2.93). Notably, the lat-
ter work constructs new models from scratch, incorporating
minimal parameters to enhance the DNN’s tolerance to noise.
Regarding CIFAR-10, the investigation outlined in [46] records
a peak accuracy of 72% with ϵ=2, surpassing the pioneering
study by Abadi et al. [6] by 5%. In contrast, Privé-HDnn
achieves a 77.8% accuracy on the same CIFAR-10 dataset,
a 5.8% improvement over [46] with the same ϵ=2. This
showcases that the accuracy of Privé-HDnn is either on par or
exceeds the performance of prior deep learning investigations
incorporating differential privacy. Since previous studies [46],
[62] did not include results for CIFAR-100. We exclusively
present Privé-HDnn’s outcomes, demonstrating its ability to
ensure privacy with ϵ=10, albeit at a 40% accuracy trade-
off after 40 epochs. The accuracy of Privé-HDnn can be
further improved by adopting larger CNN backbones, such as
ResNet-50, or by leveraging more relevant public datasets for
pretraining the feature extractor, like a more pertinent subset
of ILSVRC 2012.

(2) Execution time: Unlike studies like [46] that built a cus-
tom model, Privé-HDnn leverages existing models for feature

extraction and only trains HDC on the extracted features. Due
to the fast convergence of HDC and its simplicity, Privé-HDnn
requires only 40 training epochs (Fig. 16). Table V compares
the training time of Privé-HDnn with DNN training in [6]
and [46] on MNIST, CIFAR-10. The training time of Privé-
HDnn on CIFAR-100 is also reported as a reference, which is
slower than CIFAR-10 due to our use of ResNet-50 instead
of ResNet-18 as the feature extractor. The terms low and
high denote the minimal and maximal configurations of prior
works, established according to their respective privacy goals
and hyperparameters. For instance, in the high configuration
of a previous study [46], which is tailored to the CIFAR-10
dataset, 400 epochs were utilized with a batch size of 256,
each epoch taking 240 seconds. The GPU implementation of
Privé-HDnn demonstrates remarkable runtime improvement,
achieving speeds that are 9.2–410× faster than [6], and 22–
1231× faster than [46]. Even the CPU-based training of Privé-
HDnn outperforms previous DNN methods designed for GPU
acceleration. The CPU training time is reduced by a factor of
2.1–92× compared to [6], and 4.8–276× compared to [46].
This acceleration is underpinned by HDC’s computational
efficiency. Privé-HDnn effectively addresses privacy concerns
inherent to HDC, establishing itself as an ideal framework for
efficient and privacy-aware learning.

H. Overhead Analysis
(1) Computational overhead: The proposed privacy-

enhancing techniques impose minimal computational over-
head. The accuracy drop of the local sparsification is only
0.14% for 87% sparsification rate. This rate of sparsification
lowers the energy cost of communicating data by 63% and
improves performance by 2.6× (38×) over non-sparse FPGA
(CPU). The noise is applied on top of the model, so the model
size and training time do not change. In particular, for images,
Privé-HDnn leverages the readily available pre-trained CNNs
(unlike previous studies that train from scratch). Consequently,
the training is very fast as only the HDC part is updated, taking
only 1.3 minutes as compared to 26 hours for the CNN, with
better accuracy. The computational time for noise injection is
less than 30% of the differential-private iterative HDC pipeline
in Algorithm 1. This HDC pipeline does not include the
neural network feature extraction part in Privé-HDnn, thus
is extremely lightweight. When including the extraction of
HDnn features, the overhead of noise injection is less than
1% on Privé-HDnn (GPU), and would be even smaller on
Privé-HDnn (CPU).

14

(2) Memory overhead: Privé-HDnn largely reduces the
memory costs compared to DNN baselines due to the nature
of HDC. In Privé-HDnn, the shallow CNN feature extractor
remains frozen, necessitating training solely for the HDC
classifier. Consequently, Privé-HDnn boasts minimal memory
consumption in comparison to DNN training, where gradients
and intermediate activations must be stored. For instance, in
the CIFAR-100 case study utilizing ResNet-50 as a pretrained
feature extractor, Privé-HDnn requires 25.5MB, 2.56MB, and
1MB to store all the parameters in ResNet-50, the random
projection matrix, and the trained class vectors, respectively.
In contrast, training the entire ResNet-50 model may demand
over 10GB of memory [63]. Privé-HDnn thus achieves a
memory cost reduction exceeding 300x.

VII. CONCLUSION

In this paper, we leverage the noise robustness of HDC to
address the inherent privacy challenges of HDC for efficient
privacy-preserved training and inference. We first thoroughly
study the feature extraction challenge that can infer the impor-
tant encoding parameters (e.g., base vectors) and reconstruct
the original data in HDC. To improve inference privacy, we
propose local sparsification with efficient FPGA implemen-
tation, which deviates the decoded values by a normalized
RMSE of 0.42 versus the original values, and improves
the encoding performance by up to 5.3× over non-sparse
FPGA implementation, and 79× over CPU implementation.
For training, we propose Privé-HDnn with differential private
one-pass and iterative training on complex applications such
as image classification. Privé-HDnn achieves comparable or
better accuracy by up to 5.8% versus DNN-only solutions,
while reducing the training time on GPU 9.2–1231× over the
state of the art [6], [46].

ACKNOWLEDGEMENTS

This work was supported in part by PRISM and CoCoSys,
centers in JUMP 2.0, an SRC program sponsored by DARPA,
and NSF grants #1911095, #1826967, #2100237, #2112167,
#2003279, #2112665, and #2052809.

REFERENCES

[1] A. Gupta and P. Nahar, “Classification and yield prediction in smart
agriculture system using iot,” Journal of Ambient Intelligence and
Humanized Computing, pp. 1–10, 2022.

[2] P. Boobalan et al., “Fusion of federated learning and industrial internet
of things: A survey,” Computer Networks, vol. 212, p. 109048, 2022.

[3] E. Wang et al., “Deep neural network approximation for custom hard-
ware: Where we’ve been, where we’re going,” ACM Computing Surveys
(CSUR), vol. 52, no. 2, pp. 1–39, 2019.

[4] I. Gim and J. Ko, “Memory-efficient dnn training on mobile devices,”
in Proceedings of the 20th Annual International Conference on Mobile
Systems, Applications and Services, pp. 464–476, 2022.

[5] Y. Mao, W. Hong, B. Zhu, Z. Zhu, Y. Zhang, and S. Zhong, “Secure
deep neural network models publishing against membership inference
attacks via training task parallelism,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 11, pp. 3079–3091, 2021.

[6] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in
Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, pp. 308–318, 2016.

[7] F. Mireshghallah et al., “Privacy in deep learning: A survey,” arXiv
preprint arXiv:2004.12254, 2020.

[8] S. Datta, R. A. Antonio, A. R. Ison, and J. M. Rabaey, “A programmable
hyper-dimensional processor architecture for human-centric iot,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9,
no. 3, pp. 439–452, 2019.

[9] B. Khaleghi, J. Kang, H. Xu, J. Morris, and T. Rosing, “Generic: highly
efficient learning engine on edge using hyperdimensional computing,”
in Proceedings of the 59th ACM/IEEE Design Automation Conference,
pp. 1117–1122, 2022.

[10] A. Thomas, S. Dasgupta, and T. Rosing, “A theoretical perspective
on hyperdimensional computing,” Journal of Artificial Intelligence Re-
search, vol. 72, pp. 215–249, 2021.

[11] M. Imani, D. Kong, A. Rahimi, and T. Rosing, “Voicehd: Hyperdi-
mensional computing for efficient speech recognition,” in 2017 IEEE
international conference on rebooting computing (ICRC), pp. 1–8, IEEE,
2017.

[12] Y. Kim, M. Imani, and T. S. Rosing, “Efficient human activity recog-
nition using hyperdimensional computing,” in Proceedings of the 8th
International Conference on the Internet of Things, pp. 1–6, 2018.

[13] Y. Yao, W. Liu, G. Zhang, and W. Hu, “Radar-based human activity
recognition using hyperdimensional computing,” IEEE Transactions on
Microwave Theory and Techniques, vol. 70, no. 3, pp. 1605–1619, 2021.

[14] A. Moin et al., “A wearable biosensing system with in-sensor adaptive
machine learning for hand gesture recognition,” Nature Electronics,
vol. 4, no. 1, pp. 54–63, 2021.

[15] W. Chen and H. Li, “Adversarial attacks on voice recognition based on
hyper dimensional computing,” Journal of Signal Processing Systems,
vol. 93, no. 7, pp. 709–718, 2021.

[16] W. Xu, J. Kang, and T. Rosing, “Fsl-hd: Accelerating few-shot learning
on reram using hyperdimensional computing,” in 2023 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), pp. 1–6, IEEE,
2023.

[17] B. Khaleghi, M. Imani, and T. Rosing, “Prive-hd: Privacy-preserved
hyperdimensional computing,” in 2020 57th ACM/IEEE Design Automa-
tion Conference (DAC), pp. 1–6, IEEE, 2020.

[18] A. Hernández-Cano, R. Cammarota, and M. Imani, “Prid: Model in-
version privacy attacks in hyperdimensional learning systems,” in 2021
58th ACM/IEEE Design Automation Conference (DAC), pp. 553–558,
IEEE, 2021.

[19] M. Imani, Y. Kim, S. Riazi, J. Messerly, P. Liu, F. Koushanfar, and
T. Rosing, “A framework for collaborative learning in secure high-
dimensional space,” in 2019 IEEE 12th International Conference on
Cloud Computing (CLOUD), pp. 435–446, IEEE, 2019.

[20] R. Chandrasekaran, K. Ergun, J. Lee, D. Nanjunda, J. Kang, and
T. Rosing, “Fhdnn: Communication efficient and robust federated learn-
ing for aiot networks,” in Proceedings of the 59th ACM/IEEE Design
Automation Conference, pp. 37–42, 2022.

[21] Q. Zhao, K. Lee, J. Liu, M. Huzaifa, X. Yu, and T. Rosing, “Fedhd:
federated learning with hyperdimensional computing,” in Proceedings
of the 28th Annual International Conference on Mobile Computing And
Networking, pp. 791–793, 2022.

[22] S. Zhang, D. Ma, S. Bian, L. Yang, and X. Jiao, “On hyperdimensional
computing-based federated learning: A case study,” in 2023 Interna-
tional Joint Conference on Neural Networks (IJCNN), pp. 1–8, IEEE,
2023.

[23] S. Zhang, R. Wang, J. J. Zhang, A. Rahimi, and X. Jiao, “Assessing
robustness of hyperdimensional computing against errors in associative
memory,” in 2021 IEEE 32nd International Conference on Application-
specific Systems, Architectures and Processors (ASAP), pp. 211–217,
IEEE, 2021.

[24] J. Morris, K. Ergun, B. Khaleghi, M. Imani, B. Aksanli, and T. Simunic,
“Hydrea: Utilizing hyperdimensional computing for a more robust and
efficient machine learning system,” ACM Transactions on Embedded
Computing Systems, vol. 21, no. 6, pp. 1–25, 2022.

[25] J. Park, C. Quan, H. Moon, and J. Lee, “Hyperdimensional computing as
a rescue for efficient privacy-preserving machine learning-as-a-service,”
in 2023 IEEE/ACM International Conference on Computer Aided Design
(ICCAD), pp. 1–8, IEEE, 2023.

[26] Y. Nam, M. Zhou, S. Gupta, G. De Micheli, R. Cammarota, C. Wilker-
son, D. Micciancio, and T. Rosing, “Efficient machine learning on en-
crypted data using hyperdimensional computing,” in 2023 IEEE/ACM In-
ternational Symposium on Low Power Electronics and Design (ISLPED),
pp. 1–6, IEEE, 2023.

[27] X. Yu, M. Zhou, F. Asgarinejad, O. Gungor, B. Aksanli, and T. Rosing,
“Lightning talk: Private and secure edge ai with hyperdimensional
computing,” in 2023 60th ACM/IEEE Design Automation Conference
(DAC), pp. 1–2, IEEE, 2023.

15

[28] R. Wang, W. Wen, K. Juretus, and X. Jiao, “Pp-hdc: A privacy-
preserving inference framework for hyperdimensional computing,” in
2024 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 1–6, IEEE, 2024.

[29] F. Yang and S. Ren, “Adversarial attacks on brain-inspired hyperdimen-
sional computing-based classifiers,” arXiv preprint arXiv:2006.05594,
2020.

[30] D. Ma, J. Guo, Y. Jiang, and X. Jiao, “Hdtest: Differential fuzz testing of
brain-inspired hyperdimensional computing,” in 2021 58th ACM/IEEE
Design Automation Conference (DAC), pp. 391–396, IEEE, 2021.

[31] R. Wang and X. Jiao, “Poisonhd: poison attack on brain-inspired
hyperdimensional computing,” in 2022 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 298–303, IEEE, 2022.

[32] H. Kasyap and S. Tripathy, “Beyond data poisoning in federated
learning,” Expert Systems with Applications, vol. 235, p. 121192, 2024.

[33] F. Liu, H. Li, Y. Chen, T. Yang, and L. Jiang, “Hyperattack: An
efficient attack framework for hyperdimensional computing,” in 2023
60th ACM/IEEE Design Automation Conference (DAC), pp. 1–6, IEEE,
2023.

[34] D. Ma, S. Zhang, and X. Jiao, “Robust hyperdimensional computing
against cyber attacks and hardware errors: A survey,” in Proceedings of
the 28th Asia and South Pacific Design Automation Conference, pp. 598–
605, 2023.

[35] P. Courrieu, “Fast computation of moore-penrose inverse matrices,”
arXiv preprint arXiv:0804.4809, 2008.

[36] A. Menon et al., “Efficient emotion recognition using hyperdimensional
computing with combinatorial channel encoding and cellular automata,”
Brain informatics, 2022.

[37] L. Lyu, H. Yu, J. Zhao, and Q. Yang, “Threats to federated learning,”
Federated Learning: Privacy and Incentive, pp. 3–16, 2020.

[38] Y. Shen et al., “Algorithmic insights on continual learning from fruit
flies,” arXiv preprint arXiv:2107.07617, 2021.

[39] S. Salamat, A. Haj Aboutalebi, B. Khaleghi, J. H. Lee, Y. S. Ki,
and T. Rosing, “Nascent: Near-storage acceleration of database sort on
smartssd,” in The 2021 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 262–272, 2021.

[40] M. Imani, S. Bosch, S. Datta, S. Ramakrishna, S. Salamat, J. M. Rabaey,
and T. Rosing, “Quanthd: A quantization framework for hyperdimen-
sional computing,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. 10, pp. 2268–2278, 2019.

[41] B. Khaleghi, S. Salamat, A. Thomas, F. Asgarinejad, Y. Kim, and
T. Rosing, “Shear er: highly-efficient hyperdimensional computing by
software-hardware enabled multifold approximation,” in Proceedings of
the ACM/IEEE International Symposium on Low Power Electronics and
Design, pp. 241–246, 2020.

[42] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features
from tiny images,” 2009.

[43] A. Dutta, S. Gupta, B. Khaleghi, R. Chandrasekaran, W. Xu, and
T. Rosing, “Hdnn-pim: Efficient in memory design of hyperdimensional
computing with feature extraction,” in Proceedings of the Great Lakes
Symposium on VLSI 2022, pp. 281–286, 2022.

[44] C. Dwork, G. N. Rothblum, and S. Vadhan, “Boosting and differential
privacy,” in 2010 IEEE 51st annual symposium on foundations of
computer science, pp. 51–60, IEEE, 2010.

[45] S. P. Kasiviswanathan et al., “What can we learn privately?,” SIAM
Journal on Computing, 2011.

[46] N. Papernot et al., “Making the shoe fit: Architectures, initializations,
and tuning for learning with privacy,” 2019.

[47] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category
dataset,” 2007.

[48] D. Anguita et al., “A public domain dataset for human activity recog-
nition using smartphones,” in ESANN’13.

[49] A. Reiss and D. Stricker, “Introducing a new benchmarked dataset for
activity monitoring,” in 2012 16th international symposium on wearable
computers, pp. 108–109, IEEE, 2012.

[50] “Uci machine learning repository.” http://archive.ics.uci.edu/ml/datasets/
ISOLET.

[51] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE signal processing magazine, 2012.

[52] “The cifar dataset.” https://www.cs.toronto.edu/∼kriz/cifar.html.
[53] “Xilinx power estimator user guide ug440.” User Guide, April 2022.
[54] “CPU energy meter,” 2020.
[55] S. Salamat, M. Imani, B. Khaleghi, and T. Rosing, “F5-hd: Fast flexible

fpga-based framework for refreshing hyperdimensional computing,” in
Proceedings of the 2019 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pp. 53–62, 2019.

[56] J. Kang et al., “Openhd: A gpu-powered framework for hyperdimen-
sional computing,” IEEE Transactions on Computers, 2022.

[57] P. Vergés et al., “Hdcc: A hyperdimensional computing compiler for
classification on embedded systems and high-performance computing,”
arXiv preprint arXiv:2304.12398, 2023.

[58] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[59] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, 2012.

[60] M. Abo-Zahhad et al., “An energy consumption model for wireless
sensor networks,” in ICEAC’15.

[61] T. F. Wu, H. Li, P.-C. Huang, A. Rahimi, G. Hills, B. Hodson, W. Hwang,
J. M. Rabaey, H.-S. P. Wong, M. M. Shulaker, et al., “Hyperdimensional
computing exploiting carbon nanotube fets, resistive ram, and their
monolithic 3d integration,” IEEE Journal of Solid-State Circuits, vol. 53,
no. 11, pp. 3183–3196, 2018.

[62] C. Chen and J. Lee, “Stochastic adaptive line search for differentially
private optimization,” in 2020 IEEE International Conference on Big
Data (Big Data), pp. 1011–1020, IEEE, 2020.

[63] “Pytorch forums.” https://discuss.pytorch.org/t/
resnet-50-takes-10-13gb-to-run-with-batch-size-of-96/117402.

