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Federated learning is a distributed learning method by training the model in locally multiple clients, which
has been used in numerous fields. Current convolutional neural networks (CNN)-based federated learning
approaches face challenges from computational cost, communication efficiency and robust communication.
Recently, Hyper Dimensional Computing (HDC) has been recognized as a promising technique to address
these challenges. HDC encodes data as high-dimensional vectors and enables lightweight training and
communication through simple parallel vector operations. Several HDC-based federated learning methods
have been proposed. Although existing methods reduce computational efficiency and communication cost,
they are difficult to handle complex learning tasks and are not robust to unreliable wireless channels. In this
work, we innovatively introduce a synergetic federated learning framework, FHDnn. With advantage of the
complementary strengths of CNN and HDC, FHDnn can achieve optimal performance on complex image tasks
while maintaining good computational and communication efficiency. Secondly, we demonstrate in detail the
convergence of using HDC in a generalized federated learning framework, providing theoretical guarantees
for HDC-based federated learning approach. Finally, we design 3 communication strategies to further improve
the communication efficiency of FHDnn by 32×. Experiments demonstrate that FHDnn converges 3× faster
than CNN-based federated learning methods, reduces the communication cost by 2112×, the local computation
and energy consumption by 192×. In addition, it has good robustness to unreliable communication with bit
errors, noise and packet loss.
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1 INTRODUCTION
Recent years have witnessed unprecedented growth in IoT data collection, with an estimated 40
billion interconnected devices generating over 79 zettabytes of data by 2025 [22]. This massive
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data enables advanced deep learning applications across various domains [38]. In traditional cloud-
centric deep learning frameworks, data are usually collected by remote clients and centrally stored
in servers or data centers with powerful computing capabilities for model training. However, clients
may be reluctant to share data with servers due to privacy concerns. In addition, transferring
huge datasets between clients and servers can place a heavy burden on limited network resources.
In recent years, federated learning (FL) [41], as an innovative alternative to centralized learning
has attracted significant attention. FL supports machine learning in edge networks without data
sharing. Each client trains a model independently based on its local dataset and uploads the model
parameters to a centralized server. Subsequently, the server aggregates the model parameters from
all participating clients to form a unified global model.

Existing FL methods face three main challenges: computational cost, communication efficiency,
and robust communication. Convolutional neural network (CNN)-based federated learning methods
demand significant computational and communication resources due to their large number of
parameters. For instance, training a ResNet-18 model [18] in a federated setting with one server and
100 clients requires 110 GB of data transfer and 18,000 GFLOPS of computation after 100 training
rounds. To address these challenges, prior studies mainly uses the quantization model [49] and some
pruning methods [26] to reduce the amount of computation. Approaches to address communication
bottlenecks have focused on reducing the size of updates through the model [34] and reducing the
number of communication rounds[49]. Last but not least, unreliable wireless channel can interfere
with the proper transmission of signals due to noise, bit errors, and packet loss, resulting in lower
model accuracy. A common approach to solving this problem is to use multiple-access techniques
[17] (e.g., TDMA, OFDMA) to prevent interference and error-correcting codes to overcome the noise.
If errors persist, transmission failures need to be detected and recovered through acknowledgement,
retransmission and timeout mechanisms [37]. However, this is very expensive. Typically, a large
amount of wireless resources are required to achieve error-free communication, which further
increases energy consumption and limits communication efficiency, thereby reducing the training
speed and convergence of FL. Existing methods are attempting to address these challenges, but
addressing all of these issues effectively and simultaneously remains difficult [59].
Recently, several studies have shown that Hyperdimensional Computing (HDC) [16] is a very

effective way to address the bottleneck of FL. HDC, a computational paradigm that encodes data
into high-dimensional vectors to simulate brain-inspired computations, has been widely used in
several learning domains, including bio-signal processing [47], activity classification [32], speech
recognition [25], and multimodal sensor fusion [66]. HDC is much more computationally and com-
municatively efficient than traditional deep learning methods since it enables fast and lightweight
learning through simple operations, and thus is well suited to run on resource-constrained edge
devices. Some federal learning frameworks based on HDC have been proposed [21, 24, 40, 64],
however, they are difficult to scale to complex tasks, have no theoretical guarantees, and are not
good enough in terms of communication robustness. For example, most of exciting HDC-based
federated learning methods have only been validated on datasets like MNIST [11], ISOLET [1], and
some simple HAR datasets [2], but struggle to handle more complex image classification tasks. The
state-of-the-art (SOTA) method [63] also achieves only 49% best accuracy on CIFAR-10 [36]. There-
fore, in this work, our main goal is to improve the accuracy of the HDC-based federated learning
framework on complex tasks, taking into account its optimal computational cost, communication
efficiency, and robust communication.
In this paper, we propose FHDnn, a synergetic federated learning framework combining pre-

trained CNN to learn complex feature structures and HDC for computational and communication
efficiency. FHDnn encodes the extracted features as hypervectors and trains the HD classifier in a
horizontally federated manner [62], each client locally trains a model based on the data it possesses,
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which shares the same features. Subsequently, the central server communicates with all clients
and aggregates the model parameters to update a unified global model. Building on our prior
work [6], this paper provides a systematic and comprehensive extension with several significant
contributions. First, in this paper, we comprehensively analyze the training process of HDC from
both statistical and optimization perspectives, and formalize the training algorithm of HDC in a
generic federated learning scenario. Second, for the first time, we present a complete proof of the
convergence property of HDC within a general federated learning framework, providing a critical
theoretical guarantee for HDC-based federated learning. In addition, we test the performance
of the defined HDC training algorithm on five datasets. The experiments verify the convergence
speed and performance of the HDC training algorithm in a generalized federated learning scenario,
which is consistent with our proofs and analysis. Last but not least, we design 3 novel communi-
cation strategies to further improve the communication efficiency of FHDnn, which increases its
communication efficiency 32× under the condition of losing only 2.9% accuracy.
In summary, our main contributions are as follows:
(1) In this paper, we introduce FHDnn, a new synergetic federated learning framework combin-

ing CNN and HDC in more detail. It combines the advantages of both CNN and HDC, and can
achieve significant accuracy improvement in complex image classification while maintaining high
computational and communication efficiency.
(2) For the first time, we provide a complete proof in a general federated learning framework

that HDC can converge at a rate of𝑂 ( 1
𝑇
) and analyze several of its properties, where𝑇 denotes the

number of communication rounds. This provides important theoretical guarantees for HDC-based
federated learning research.
(3) We tolerate the occurrence of errors during transmission and analyze the performance of

FHDnn under three common unreliable network channel in FL: packet loss, noise injection, and bit
error. The experiments show that the proposed method can well tolerate perturbations in the client
model.
(4) We propose three strategies to improve communication efficiency and comprehensively

validate FHDnn on different benchmark datasets. The experiment shows that with the optimization
of the communication strategy, the convergence speed of FHDnn is 3× faster than that of CNN, the
communication cost is reduced by 2112×, and the local computation and energy consumption are
reduced by 192×.
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Fig. 1. FHDnn against CNNs for federated learning
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2 RELATEDWORK
In this section, we review the efforts made by existing methods to improve the computational
cost and communication efficiency of federated learning, and summarize the federal learning
frameworks based on HDC.

2.1 Improving Computation Efficiency in FL
To overcome the challenge of limited client resources, much work has explored low-complexity
neural network architectures and lightweight algorithms suitable for edge devices, e.g., pruning [26]
and using quantized models [49], which are also helpful for reducing computation. A small subset of
the proposed approaches specifically devotes their attention to resolving the computational issues
in federated learning. In [61], a “soft-training” method was introduced to dynamically compress
the original training model into a smaller restricted volume through rotating parameter training. In
each round, it lets different parts of the model parameters alternately join the training, but maintains
the complete model for federated aggregation. The authors of [55] suggested dividing the model
into sub-models, then using only a few sub-models for partial federated training while keeping the
rest of the parameters fixed. During training, sub-model capacities are gradually increased until
they reach the full model. Along similar lines, federated dropout [5] is a technique that enables each
client to locally operate on a smaller sub-model while still providing updates that can be applied
to the larger global model on the server. Finally, the technique presented in [53], called splitfed
learning, combines the strengths of federated learning and split learning by splitting a NN into
client-side and server-side sub-networks during federated training.

2.2 Improving Communication Efficiency in FL
FedAvg [44] improved the communication efficiency of federated learning framework by allowing
for the clients to run multiple local SGD steps per communication round. Another approach that
directly affects local training is to modify model complexity. Some examples are pruning [67],
restricting the model weights to be numbers at a certain bitwidth [10], and bounding the model
size [45]. Some work explored methods to reduce the communicated model (or gradient) size
without altering the original local models. They typically perform a form of compression, that is,
instead of transmitting the raw model/gradient data, one transmits a compressed representation
with fewer bits, for instance by means of limiting bitwidth (quantization) or enforcing sparsity
(sparsification). In particular, a popular class of quantization operators is based on random dither-
ing [19]. Sparsification methods decrease the number of non-zero entries in the communicated data
to obtain sparse vectors [57]. Structured and sketched updates are also proposed in [33], which
can be further supported by lossy compression and federated dropout [5]. Some other approaches
include randomized techniques such as stochastic rounding [52], subsampling [34], and random-
ized approximation [35]. In addition, some work has tried simple client-selection heuristics, such
as selecting clients with higher losses [3], sampling clients of larger update norm with higher
probability [8], and sampling clients with probabilities proportional to their local dataset size [44].

2.3 HDC-based Federated Learning
The lightweight nature of the HDC model makes it well-suited to run on resource-constrained
edge devices. SecureHD [24] first proposes a federated learning framework incorporating HDC.
FedHD [64] demonstrates how to deploy HDC’s federated learning framework on real edge com-
puting devices and under realistic network conditions. FL-HDC [21] polarizes the parameters of the
model and proposes a retraining mechanism with adaptive learning rate to improve communication
efficiency. Few-shot federated learning [50] proposes a novel compression method to optimize
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communication efficiency. HyperFeel [40] designs an online update mechanism in the local client,
which can achieve lower communication overhead. MultimodalHD [65] feeds multimodal hyper-
vectors to the focus fusion module to learn richer multimodal representations. Some works also
studied security issues in HD-based federated learning frameworks [30]. Although these methods
have improved computational and communication efficiency, they only perform well on MNIST
[11], ISOLET [1], and some simple HAR datasets [2], but struggle to handle more complex image
datasets. The best accuracies on CIFAR-10 [36] is only 49.2% [63]. In contrast, FHDnn achieves over
80% accuracy on CIFAR-10 in less than 25 rounds of communication and is more robust against
unreliable channels.

3 BACKGROUND ON HYPERDIMENSIONAL COMPUTING
In this section, we introduce the encoding, learning, and training processes of HDC. We first
illustrate the encoding method of HDC for mapping input signals into hypervectors, and then
discuss the principles and process of its learning. Finally, we focus on analyzing its training process,
which is important for further extending its application in federated learning scenarios and to
analyze its properties.

3.1 Encoding of Hyperdimensional Computing
HDC performs cognitive tasks using high-dimensional vectors, also known as hypervectors. These
hypervectors typically range from 1,000 to 10,000 dimensions and are composed of independent
and identically distributed (i.i.d.) components. Due to the randomness and high dimensionality,
any two randomly chosen points in hyperdimensional space are nearly orthogonal [28].
The first step of HDC is to map/encode the input signal (e.g., an image, feature vector, or a

time-series window) into hypervectors. This encoding process is consistent across various HDC
applications. Assume the input x ∈ X is represented by the vector x = [𝑥1, 𝑥2, ..., 𝑥𝑚]𝑇 , where 𝑥𝑖s
denote the features and𝑚 is the length of input vector. HDC encoding operation maps the input
data to its high-dimensional representation h ∈ H with dimension 𝑑 ≫𝑚 under some function
𝜙 : X → H . Some encoding algorithms have been proposed for different memory-compute
trade-offs, such as base-level (a.k.a position-ID) [25], permutation [48], and random projection [23].
In this paper, we refer to the random projection encoding [23], but our methodology can be

extended to any other encoding approach. Random projection encoding embeds the data into a
high-dimensional Euclidean space under a random linear map. The output of this mapping can be
quantized with minimal loss of information for better computational efficiency. If quantized, the HD
embedding is constructed as 𝜙 (x) = sign(Φx) under the encoding function 𝜙 : R𝑚 → Z𝑑 , the rows
of which Φ ∈ R𝑑×𝑚 are generated by randomly sampling directions from the𝑚-dimensional unit
sphere. Here, sign(Φx) is the element-wise sign function returning +1 if Φx ≥ 0 and −1 otherwise.
Fig. 2(a) shows an overview of HDC encoding.

3.2 Learning of Hyperdimensional Computing
Many learning tasks can be implemented in the HD domain. Here, we focus on classification, one
of the most common learning problems. Consider a dataset D = {(x𝑖 , 𝑦𝑖 )}𝑛𝑖=1, where xi ∈ X ⊂ R𝑚

represents the input samples, and 𝑦𝑖 ∈ C indicates their class labels. For HD learning, we first
encode the entire set of data samples in D into hyperdimensional vectors such that h𝑖 = 𝜙 (x𝑖 ) is a
hypervector in the d-dimensional inner-product spaceH . These high-dimensional embeddings
represent data in a way that admits linear learning algorithms, even if the data was not separable to
begin with. The common approach to learning with HD representations involves bundling training
examples for each class into a set of "prototypes," which are subsequently used for classification.
The bundling operator is used to compile a set of elements in H and is defined as a function
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Fig. 2. Hyperdimensional learning overview

⊕ : H ×H → H . The function takes two points in H and returns a third point similar to both
operands. We bundle all the encoded hypervectors that belong to the k-th class to construct the
corresponding prototype c𝑘 :

c𝑘 =
⊕

𝑖 s.t. 𝑦𝑖=𝑘
h𝑖 (1)

Given a query data x𝑞 ∈ X for which we search for the correct label to classify, we take the encoded
hypervector h𝑞 ∈ H and return the label of the most similar prototype:

𝑦𝑞 = 𝑘∗ = argmax
𝑘∈1,...,𝐾

𝛿 (h𝑞, c𝑘 ) (2)

where 𝛿 is a similarity metric. The detailed process is as follows: 1). One-Shot Training. The bundling
operator ⊕ is often chosen to be element-wise sum. In this case, the class prototypes are obtained
by adding all hypervectors with the same class label. Then, the operation in Equation (1) is simply
calculated as: c𝑘 =

∑
𝑖 s.t. 𝑦𝑖=𝑘 h𝑖 . It can be considered a single-pass training , as the entire dataset is

used only once—without iterations—to construct the model. 2).Inference. The similarity metric 𝛿 is
typically defined as cosine similarity, which measures the angle between two vectors in an inner
product space. Using cosine similarity, Equation (2) can be expressed in terms of the dot product
and vector magnitudes as follows:

𝑦𝑞 = 𝑘∗ = argmax
𝑘∈1,...,𝐾

⟨c𝑘 , h𝑞⟩
∥c𝑘 ∥

(3)

3). Retraining. One-shot training often does not result in sufficient accuracy for complex tasks. A
common approach is to fine-tune the class prototypes using a few iterations of retraining [25, 27,
31, 48]. We use the perceptron algorithm [14] to update the class hypervectors for mistpredicted
samples. The model is updated only if the query in Equation (3) returns an incorrect label. Let
𝑦𝑞 = 𝑘 and 𝑦𝑞 = 𝑘 ′ be the correct and mispredicted labels respectively. So, the new class prototypes
after the retraining iteration are: c𝑘 = c𝑘 + 𝛼h𝑞, c𝑘 ′ = c𝑘 ′ − 𝛼h𝑞 , where 𝛼 is the HD learning rate,
controlling the amount of change we make to the model during each iteration. Fig. 2(b) shows an
overview of HDC for classification.

3.3 Training Analysis of Hyperdimensional Computing
When addressing specific tasks, the training of HDC can be categorized into single-pass and iterative
training. The single-pass training process and the dot-product-based inference method are highly
analogous to Fisher’s Linear Discriminant Analysis [13]. If the target accuracy is not achieved,
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we need to iteratively update the class prototypes to fine-tune the model until the optimal class-
separating model is identified. In the following, we will analyze the principle of HDC single-pass
training and the gradient descent in the iterative update process from the perspective of statistical
learning and optimization. This analysis facilitates the extension of HDC into the general framework
of federated learning and theoretically prove its good properties.

1.) Single-pass training: Assume each sample x ∈ X has a binary label 𝑦 ∈ {−1, 1} for simplicity,
which is easily extendable to multi-class problems via "one-versus-rest" rules. Fisher’s linear
discriminant in HD space finds the line 𝑧 = w𝑇h that maximizes class separation by optimizing
the projection direction w. The goal is for classes to be as far apart as possible, while the distance
between intra-class scatter points is as small as possible with low variance. So the criterion that
quantifies the desired goal can be expressed as Rayleigh quotient:

𝐽 (w) = w𝑇 S𝐵w
w𝑇 S𝑊 w

(4)

S𝐵 = (𝝁1 − 𝝁−1) (𝝁1 − 𝝁−1)𝑇

S𝑊 = 𝚺1 + 𝚺−1
where 𝝁±1 and 𝚺±1 are the mean vector and the covariance matrix respectively. S𝐵 is defined as
the between-class scatter which measures the separation between class means, while S𝑊 is the
within-class scatter, measuring the variability inside the classes. Our goal is achieved by maximizing
the Rayleigh quotient with respect to w. The corresponding optimal projection direction is then
given as: w∗ = (𝚺1 + 𝚺−1)−1 (𝝁1 − 𝝁−1). Fisher’s linear discriminant can be used as a classifier by
applying a threshold to the dot product (projection) as the decision criterion:

𝑧 = (𝝁1 − 𝝁−1)𝑇 (𝚺1 + 𝚺−1)−1h𝑞 +𝑇
{
> 0, 𝑦𝑞 = 1
< 0, 𝑦𝑞 = −1 (5)

For two classes, the “similarity check” step in (3) can be rewritten in the form of a decision function
as follows:

𝑦𝑞 =

{
1, if ( c1

∥c1 ∥ −
c−1
∥c−1 ∥ )

𝑇h𝑞 > 0
−1, if ( c1

∥c1 ∥ −
c−1
∥c−1 ∥ )

𝑇h𝑞 < 0 (6)

Since the class prototypes are normalized sums of hypervectors with the same labels, they relate
to the respective class means by a scalar multiplication, i.e, c±1 =

∥c±1 ∥
𝑁±1

𝝁±1. Here, 𝑁±1 denotes the
total number of samples in classes. We obtain the below decision rule after plugging in 𝝁±1 into (6),
then dividing both sides of the inequalities by ∥c±1 ∥

𝑁±1
.

𝑦𝑞 =

{
1, if (𝝁1 − 𝝁−1)𝑇h𝑞 > 0
−1, if (𝝁1 − 𝝁−1)𝑇h𝑞 < 0 (7)

This classifier is equivalent to Equation (5) in the special case where 𝚺1 = 𝚺−1 = 𝚺 = 1
2 I. Therefore,

one-shot training followed by inference in HD computing is equivalent to applying Fisher’s linear
discriminant and classifying sample encoded hypervectors, which involves projecting the data
through high-definition coding, making it linearly separable, and then finding a linear discriminant.
2.) Iterative training: Let w ∈ R𝑑 be a vector of weights that specifies a hyperplane in the

hyperdimensional space with 𝑑 dimensions. We define this vector in terms of class prototypes, such
that w = c1 − c−1. Then, after inputing in the weight vector and simplifying the equations in (6),
classification of a query data x𝑞 is made through the following decision function:

𝑦𝑞 =

{
1, if w𝑇h𝑞 > 0
−1, if w𝑇h𝑞 < 0 (8)
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This can be interpreted as a linear separator on the HD representations of the data. It dividesH into
two half-planes, where the boundary is the plane with normal w. The goal is to learn the weights
such that all the positive examples (𝑦𝑖 = 1) are on one side of the hyperplane and all negative
examples (𝑦𝑖 = −1) on the other. For the optimal set of weights, the linear function 𝑔(h) = w𝑇h
agrees in the sign with the labels on all training instances, i.e., sign(⟨w, h𝑖⟩) = 𝑦𝑖 for any x𝑖 ∈ X.
We can also express this condition as 𝑦𝑖 ⟨w, h𝑖⟩ > 0.

Therefore, HD retraining can be represented as an instance of Empirical Risk Minimization
(ERM). Particularly, we frame the retraining step as an optimization problem with convex loss
function, then we argue that the updates are equivalent to stochastic gradient descent (SGD) steps
over an empirical risk objective. Our ultimate goal is to find the discriminant function 𝑔w (h) which
minimizes the empirical risk on the embedded training set DH = {(h1, 𝑦1), ..., (h𝑛, 𝑦𝑛)}. Empirical
risk is defined as follows:

𝑅𝑒𝑚𝑝 (𝑔w) =
1
𝑛

𝑛∑︁
𝑖=1

ℓ (𝑔w (h𝑖 ), 𝑦𝑖 ) (9)

where ℓ : H ×H → R is the loss function The “no error” condition, 𝑦𝑖 ⟨w, h𝑖⟩ > 0 ∀𝑖 , provides a
very concise expression for the situation of zero empirical risk. It allows for the formulation of the
learning problem as the following function optimization:

minimize 𝐽 (w) = −
𝑛∑︁
𝑖=1

𝑦𝑖w𝑇h𝑖 (10)

The solution can be obtained by applying gradient descent to minimize the cost function 𝐽 (w),
with the gradient calculated as ∇𝐽 (w) = −∑𝑛

𝑖=1 𝑦𝑖h𝑖 . Alternatively, stochastic gradient descent
(SGD) can be used, where a single random example is selected at each step to update the model
parameters. For an individual example, the gradient is−𝑦𝑖h𝑖 . Using a loss function ℓ (·), the stochastic
gradient descent algorithm is defined as follows: Set the starting point w = w𝑖𝑛𝑖𝑡 , learning rates
𝜂1, 𝜂2, 𝜂3, ... (e.g. w𝑖𝑛𝑖𝑡 = 0 and 𝜂𝑡 = 𝜂 for all 𝑡 , or 𝜂𝑡 = 1/

√
𝑡 ). For a sequence of random examples

(h1, 𝑦1), (h2, 𝑦2), ... Thus, given example (h𝑡 , 𝑦𝑡 ), compute the gradient ∇ℓ (𝑔w (h𝑡 ), 𝑦𝑡 ) of the loss
w.r.t. the weights w. Update: w← w − 𝜂𝑡∇ℓ (𝑔w (h𝑡 ), 𝑦𝑡 ). Consider the loss function ℓ (𝑔w (h), 𝑦) =
max(0, 𝑦⟨w, h⟩) for the empirical risk in (9). If 𝑔w (h) has the correct sign, the loss is 0, and no
update to w occurs since the gradient is zero. If the sign is incorrect, the gradient becomes −𝑦h,
and the algorithm updates w ← w + 𝜂𝑦h with 𝜂𝑡 = 𝜂. This is exactly the same process as HDC
iterative training. Therefore, we can use the SGD with the above loss function to achieve empirical
risk minimization in HDC’s update process.

4 HYPERDIMENSIONAL COMPUTATION UNDER FEDERATED LEARNING
FRAMEWORK

In this section, we first formalize the training algorithm for HDC under the standard federated
averaging framework and then give a detailed convergence analysis and proof for the first time.
Next, we implement HDC under federated learning using the PyTorch framework and test its key
performance. The results of these experiments verify its good convergence, but also point out its
limitations in feature extraction. Based on this analysis, we propose FHDnn, a more efficient and
robust federated learning framework for HDC in Section 5.

4.1 HDC Training Algorithm under the Federated Learning Framework
Following the standard federal average framework set out in the seminal work [44], we consider
one central server and a fixed set of 𝑁 clients, each holding a local dataset. The 𝑘-th client, 𝑘 ∈ [𝑁 ],
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stores embedded dataset D𝑘 = {(h𝑘,𝑗 , 𝑦𝑘,𝑗 )}𝑛𝑘𝑗=1, with 𝑛𝑘 = |D𝑘 | denoting the number of feature-
label tuples in the respective datasets. The goal in federated learning is to learn a global model by
leveraging the local data at the clients. The raw datasets cannot be shared with the central server
due to privacy concerns, hence the training process is apportioned among the individual clients as
described by the following distributed optimization problem:

min
w

{
𝐹 (w) ≜

𝑁∑︁
𝑘=1

𝑝𝑘𝐹𝑘 (w)
}

(11)

where 𝑝𝑘 is the weight of the 𝑘-th client such that 𝑝𝑘 ≥ 0 and
∑𝑁
𝑘=1 𝑝𝑘 = 1. A natural and common

approach is to pick 𝑝𝑘 =
𝑛𝑘
𝑛
. Similar to Section 3.3, we represent our HD model by a vector of

parameters w ∈ H ⊆ R𝑑 . If the partitionD𝑘 is formed by randomly and uniformly distributing the
training examples over the clients, then we have ED𝑘

[𝐹𝑘 (w)] = 𝐹 (w), where the expectation is
over the set of examples assigned to the client. This is the IID assumption that usually does not
hold in federated learning setting; 𝐹𝑘 could be an arbitrarily bad approximation to 𝐹 under non-IID
data. We introduce a loss function as in (9) to define the learning objective and measure the fit
of the model to data. Denote ℓ

(
w; (h𝑘,𝑗 , 𝑦𝑘,𝑗 )

)
for the loss of the prediction on example (h𝑘,𝑗 , 𝑦𝑘,𝑗 )

made with an HD model parametrized by w. For the 𝑘-th client, the local objective 𝐹𝑘 (·) is defined
in the form of local empirical loss as follows:

𝐹𝑘 (w) =
1
𝑛𝑘

𝑛𝑘∑︁
𝑗=1

ℓ
(
w; (h𝑘,𝑗 , 𝑦𝑘,𝑗 )

)
(12)

The local empirical loss 𝐹𝑘 measures how well the client model fits the local data, whereas the
global loss 𝐹 quantifies the fit to the entire dataset on average. In Section 3, we discuss the SGD
optimization of the loss function ℓ = max(0, 𝑦⟨w, h⟩) equivalent to the update of the HDC iterative
training. Therefore, the objective is to find the model w∗ that minimizes the global loss, i.e.,
w∗ = argminw 𝐹 (w). We formalize the HDC training algorithm under the federated learning
framework as follows:

Algorithm. In the federated learning framework, each client maintains its own HD model and
participates in building a global model that solves Equation.(11) in a distributed fashion. This is
achieved via an iterative training procedure for which we describe one round (say 𝑡-th) of the
algorithm below.
(1) Broadcast: The central server broadcasts the latest global HD model, w𝑡 , to all clients.
(2) Local updates: Each client 𝑘 ∈ [𝑁 ] sets its model w𝑘

𝑡 = w𝑡 and then performs training for 𝐸
epochs using local data:

w𝑘
𝑡,0 = w𝑘

𝑡 ,

w𝑘
𝑡,𝜏+1 ←− w𝑘

𝑡,𝜏 − 𝜂𝑡∇𝐹𝑘 (w𝑘
𝑡,𝜏 , 𝜉

𝑘
𝜏 ), 𝑖 = 0, 1, ..., 𝐸 − 1,

w𝑘
𝑡+1 = w𝑘

𝑡,𝐸, (13)

where 𝜂𝑡 is the learning rate and 𝜉𝑘𝜏 is a mini batch of data examples sampled uniformly from
local dataset D𝑘 .

(3) Aggregation: The central server receives and aggregates the local models to produce a new
global model:

w𝑡+1 =
𝑁∑︁
𝑘=1

𝑝𝑘w𝑘
𝑡+1 . (14)
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After aggregation, the server moves on to the next round, 𝑡 + 1. This procedure is carried out until
sufficient convergence is achieved. Fig. 3 summarizes the HDC training process under the federated
learning framework. The overall update in one round of federated bundling is similar to a gradient
descent step over the empirical loss corresponding to the entire distributed dataset across clients.
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Fig. 3. HDC training process under the federated learning framework.

4.2 Convergence Analysis and Proof
For federated learning with HD algorithm, the optimization problem in (11) is cast as follows:

w∗ = argmin
w

𝑁∑︁
𝑘=1

𝑝𝑘

𝑛𝑘

𝑛𝑘∑︁
𝑗=1

max(0, 𝑦 𝑗 ⟨w, h𝑗 ⟩), (15)

and the local gradient g𝑘 = ∇𝐹𝑘 (w) is computed at client 𝑘 ∈ [𝑁 ] as:

g𝑘 =
1
𝑛𝑘

𝑛𝑘∑︁
𝑗=1
𝑦 𝑗h𝑗 (16)

As Equation (16) suggests, the gradient computations are linear, demand low-complexity opera-
tions, and thus are favourable for resource-constrained, low-power client devices. However, in
many learning tasks, linear federated learning models perform sub-optimally compared to their
counterpart, DNN-based approaches.
The introduction of HDC into the federated learning framework enables the model to achieve

both the superior performance of a nonlinear model and the low computational complexity of a
linear model. This is a direct result of HDC, which embeds data into a high-dimensional space
where the geometry is such that simple learning methods are effective. As we show in the following,
linearity in HD training benefits convergence, at the same time the performance does not degrade
due to the properties of non-linear hyperdimensional embeddings. Such convergence claims are
not possible for non-convex and non-linear DNNs. To prove that it has a good rate of convergence,
we further analyze the properties of the functions 𝐹𝑘 (·) and the gradients ∇𝐹𝑘 (·):

(1) (L-smoothness). Each local function 𝐹𝑘 (·) is L-smooth where the gradients ∇𝐹𝑘 (·) are
Lipschitz continuous: There exists a parameter 𝐿 > 0 such that for all v,w ∈ R𝑑 ,

∥∇𝐹𝑘 (v) − ∇𝐹𝑘 (w)∥ ≤ 𝐿∥v −w∥.
(2) (Strong convexity). Each local function 𝐹𝑘 (·) is 𝜇-strongly convex and differentiable: For all

v,w ∈ R𝑑 ,
𝐹𝑘 (v) ≥ 𝐹𝑘 (w) + (v −w)𝑇∇𝐹𝑘 (w) +

𝜇

2
∥v −w∥2.
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(3) (Bounded variance). The variance of stochastic gradients for each client 𝑘 is bounded: Let
𝜉𝑘 be sampled from the 𝑘-th client’s dataset uniformly at random, then there exists constants 𝜎𝑘
such that for all w ∈ R𝑑 ,

E∥∇𝐹𝑘 (w, 𝜉𝑘 ) − ∇𝐹𝑘 (w)∥2 ≤ 𝜎2𝑘 .
(4) (Uniformly bounded gradient). The expected squared norm of stochastic gradients is

uniformly bounded: for all mini-batches 𝜉𝑘 at client 𝑘 ∈ [𝑁 ] and for w ∈ R𝑑 ,
E∥∇𝐹𝑘 (w, 𝜉𝑘 )∥2 ≤ 𝐺2.

These conditions on local functions are typical and widely used for the convergence analysis of
different federated averaging frameworks.

Theorem 1. Define 𝜅 = 𝐿
𝜇
, 𝛾 = max{8𝜅, 𝐸} and choose learning rate 𝜂𝑡 = 2

𝜇 (𝛾+𝑡 ) . The convergence
with Non-IID datasets and partial client participation satisfies:

E[𝐹 (w𝑇 )] − 𝐹 ∗ ≤
2𝜅
𝛾 +𝑇

[𝐵
𝜇
+
(
2𝐿 + 𝐸𝜇

4

)
∥w0 −w∗∥2

]
(17)

where

𝐵 =

𝑁∑︁
𝑘=1

𝑝2
𝑘
𝜎2
𝑘
+ 6𝐿Γ + 8(𝐸 − 1)2𝐺2 + 𝑁 − 𝐾

𝑁 − 1
4
𝐾
𝐸2𝐻 2 (18)

Here, 𝑇 is the number of communication rounds (or SGD steps), The term Γ is used to quantify
the degree of Non-IID [42]. Let 𝐹 ∗ and 𝐹 ∗

𝑘
be the minimum values of 𝐹 and 𝐹𝑘 , respectively, then

Γ = 𝐹 ∗−∑𝑁
𝑘=1 𝑝𝑘𝐹

∗
𝑘
. As shown in Theorem 1, HDC under federated learning framework can achieve

O( 1
𝑇
) convergence rate. Detailed derivation and proof procedures are shown in Appendix A.

4.3 The Performance Test Experiment
We study a pre-experiment to test the actual performance of the HDC training algorithm in a
generalized federated learning scenario. Specifically, we implemented HDC in a federated learning
framework using the PyTorch framework and compared it to a lightweight fully connected layer
neural network. We used hypervectors of dimension 10,000 to encode the data. The fully connected
layer neural network has 128 neurons and ReLU activation units, and a final output layer with
softmax. To observe the performance of them focusing on the real-world use-cases, we evaluated
it on a wide range of benchmarks shown in Table 1 that range from relatively small datasets
collected in a small IoT network to a large dataset that includes hundreds of thousands of face
images. The dataset tested is shown in Table 1. ISOLET: recognizing audio of the English alphabet,
UCIHAR: detecting human activity based on 3-axial linear acceleration and angular velocity
data, from different people, PAMAP2: classifying five human activities based on a heart rate and
inertial measurements, FACE: classifying images with faces/non-faces, andMNIST: recognizing
handwritten digits by different people.

Table 1. Datasets (𝑛: Feature Size, 𝐾 : Number of Classes)

Dataset 𝑛 𝐾
Train
Size

Test
Size Description

ISOLET 617 26 6,238 1,559 Voice Recognition
UCIHAR 561 12 6,213 1,554 Activity Recognition (Mobile)
PAMAP2 75 5 611,142 101,582 Activity Recognition (IMU)
FACE 608 2 522,441 2,494 Face Recognition
MNIST 784 10 60,000 10,000 Handwritten Digit Recognition
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4.3.1 Accuracy and Convergence Results. We conduct our experiments for 100 clients and 100
rounds of communication. We first tune the hyperparameters for both HDC and CNNs, then
experiment with different federated learning parameters. Fig. 4 shows the accuracy and convergence
for different values of local epochs 𝐸 and local batch sizes 𝐵. For all experiments,𝐶 = 0.2 fraction of
clients are randomly picked in every communication round. For all datasets, the best convergence
is achieved with a small number of epochs (𝐸 = 1) and moderate batch sizes (𝐵 = 10, 20). As shown
in Fig. 4, HDC and NN achieve high accuracy on other three datasets except the PAMAP2 dataset.
Compared with NN, HDC shows a faster convergence rate and can provide faster early results.
NN, on the other hand, can benefit more from larger local training periods and achieve better
optimal accuracy. For the more challenging PAMAP2 dataset, the accuracy of both HDC and NN
decreased. The HDC converges quickly but fluctuates greatly, and neural networks consistently
outperform HDC. It shows the difficulty of HDC in extracting effective features when performing
more complex analyses, which severely limits its accuracy.

  
 

Fig. 4. Accuracy and convergence for various epochs (E).

4.3.2 Impact of Hypervector Dimensionality on Accuracy. Understanding the relationship between
the dimension of high-dimensional vector and problem complexity is crucial for optimizing the
performance of high-dimensional computational methods in various classification tasks. We test the
effect of hypervector dimensions on HDC classification accuracy in federated learning framework,as
shown in Table 2. It can be observed that the accuracy increases, and as the number of dimensions
increases. Some previously work [54] showed that dimensionality is directly proportional to the
bandwidth of the noise in HDC classification problems, thus providing a guideline for a trade off
between noise and the hypervector size. It is essential to consider the trade-off between performance
and resource usage, as the computational cost rises with increasing dimensions.
In essence, the HD encoding dimension exhibits a linear relationship with the number of cate-

gorical features, while it depends logarithmically on the alphabet size. The separation quality of
the problem is associated with factors such as the class separability and the encoding dimension.
Intuitively, when the classes are well separated, a smaller encoding dimension can be employed
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to achieve satisfactory performance. This is because the inherent separability of the data aids in
reducing the required dimensionality for efficient classification. Conversely, when the classes are
poorly separated, a larger encoding dimension is necessary to enhance the robustness and accuracy
of the classification process.

Table 2. Impact of Dimensionality on Accuracy

Dataset 1000 2000 4000 8000 10000
ISOLET 90.79% 93.36% 95.07% 95.37% 94.59%
UCIHAR 90.60% 93.98% 93.63% 93.54% 94.46%
PAMAP2 74.9% 76.88% 76.10% 77.85% 77.98%
FACE 95.05% 95.2% 95.74% 95.86% 96.17%
MNIST 92.24% 93.81% 95.37% 96.34% 96.80%

5 FHDNN: A SYNERGETIC FEDERATED HYPERDIMENSIONAL COMPUTING BASED
ON CNN AND HDC

From the experimental results in Section 4.3, the results indicate that although having faster
convergence, is not as accurate as NN, especially on challenging datasets. This is even more evident
when performing complex image analysis, for example, Table 3 summarizes the accuracy of various
current HDC coding methods when running the image classification task [12]. The results show
that current HDC coding methods are unable to match state-of-the-art accuracy, mainly due to
the difficulty of extracting accurate features by HDC. In this section, to overcome this problem,
we propose FHDnn, a synergistic federated learning framework that combines CNN and HDC.
FHDnn uses a pre-trained CNN as a feature extractor, whose outputs are encoded into hypervectors,
which are then used for training. CNNs excel at learning complex hierarchies of features with high
accuracy, but in the real application scenario, where transmission costs and resources are limited,
performing federated learning is prone to errors. On the other hand, HDC can provide efficient and
robust training for such distributed computationwith large-scale communication. FHDnn effectively
combines their complementary strengths to realize a lightweight, communication-efficient and
highly robust federated learning framework.

Table 3. Accuracy of HDC on image datasets

Model CIFAR10 CIFAR100 Flowers dtd GTSRB
HD-linear 26.94 8.98 19.58 6.41 83.63
HD-non linear 41.98 20.35 25.68 8.13 84.11
HD-id level 26.56 9.45 15.97 6.25 44.86
CNN 90.1 78.4 81 98.7 94.6

5.1 Model Architecture
FHDnn uses a horizontal federated learning architecture. Each client trains the model locally based
on the data it has, which has the same features. Subsequently, the clients upload the trained model
parameters to a central server, which aggregates the model parameters from all clients to form
a unified global model. FHDnn consists of two components: 1). a pre-trained CNN as a feature
extractor and 2). a federated HD learner. Fig. 5 shows the model architecture of FHDnn. The
pre-trained feature extractor is trained once and not updated at run time. This removes the need
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for costly CNN weight updates via federated learning. Instead, HD Computing is responsible for all
the federated model updates. Thus, it is much more efficient and scalable. Next, we describe these
two components in detail.

Feature Extractor: Any standard CNN model can be used as a feature extractor, in this work we
have chosen the pre-trained SimCLR ResNet model due to its excellent performance. SimCLR [7] is a
contrastive learning framework which learns representations of images in a self-supervised manner
by maximizing the similarity between latent space representations of different augmentations
of a single image. This class-agnostic framework trained on a large image dataset allows for
transfer learning over multiple datasets, (as evaluated in [7]) making it ideal for a generic feature
extractor. Standard CNNs learn representations that are fine-tuned to optimize the classification
performance of the dense classifier at the end of the network. Since SimCLR focuses on learning
general representations as opposed to classification oriented representations, it is a good choice of
a feature extractor. It is also possible to use other models such as MobileNet [20].
HD Learner: FHDnn encodes the outputs of the feature extractor into hypervectors. More

formally, given a point x ∈ X, the features z ⊂ Z𝑛 are extracted using the feature extractor
𝑓 : X → Z where 𝑓 is a pre-trained neural network. The HD embedding is constructed as
h = 𝜙 (z) = sign(Φz) under the encoding function 𝜙 : Z → H . HD learner then operates on
these hypervectors using binding and bundling which are simple and highly parallelizable. The
goal of such configuration is to avoid the transmission of the CNN and instead train only the
HD learner in a federated manner. An HD model is formed by bundling all encoded hypervectors
with the same class level together. We perform bundling by the element-wise addition of those
hypervectors, which generates corresponding class prototoypes. Thus, the HD model is simply
a set of hypervectors with the number of classes in the dataset. Then, we use the HD learner in
federated training.
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5.2 Federated Training
Fig. 6 summarizes the overall federated training process for FHDnn. The whole process involves
two steps, client local training and federated bundling. These two steps work in a cyclical fashion,
one after the other, until convergence.
Client Local Training: Each client initially starts the process with a feature extractor 𝑓 and

an untrained HD learner. Once we get the encoded hypervectors, we create class prototypes by
bundling together hypervectors of the corresponding class using c𝑘 =

∑
𝑖 h𝑘𝑖 . Inference is done

by computing the cosine similarity metric between a given encoded data point with each of the
prototypes, returning the class which has maximum similarity. After this one-shot learning process,
we iteratively refine the class prototypes by subtracting the hypervectors from the mispredicted
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class prototype and adding it to the correct prototype as shown in Fig. 5. We define the complete
HD model C as the concatenation of class hypervectors, i.e., C = [c𝑇1 , c𝑇2 , ..., c𝑇𝑙 ].

Federated Bundling: In the federated bundling framework, each client maintains its own HD
model and participates to build a global model in a distributed fashion. This is achieved via an
iterative training procedure for which we describe one round (say 𝑡-th) of the algorithm below.
(1) Broadcast: The central server broadcasts the latest global HD model, C𝑡 , to all clients.
(2) Local updates: Each participating client 𝑘 ∈ [𝑁 ] sets its model C𝑘𝑡 = C𝑡 and then performs

training for 𝐸 epochs using local data.
(3) Aggregation: The central server receives and aggregates the local models to produce a new

global model:

C𝑡+1 =
𝑁∑︁
𝑘=1

C𝑘𝑡+1. (19)

After aggregation, the server moves on to the next round, 𝑡 + 1. This procedure is carried out until
sufficient convergence is achieved.

5.3 Federated learning Over Unreliable Channels With FHDnn
Federated learning often occurs over unreliable wireless channels, introducing signal noise and
errors. We study how FHDnn provide reliable learning over such networks without additional
overhead. Following a common assumption in recent work [5, 29, 42, 49, 53], we assume that the
server makes error-free downstream broadcasts. For uplink, we consider a constrained multiple
access channel (MAC) shared among clients. To manage interference, we employ orthogonal
frequency division multiple access (OFDMA) [17], allocating dedicated resource blocks to each
client. While this ensures separate model recovery, individual channels remain noisy. Conventional
approaches limit rates for error-free transmission under Shannon’s theorem, but this scales poorly
with increasing client numbers, reducing throughput and training speed. Instead, we allow errors in
server-received models, leveraging the learning algorithm’s tolerance for perturbations. We analyze
FHDnn’s performance over unreliable MAC with corrupted model transmissions, considering three
error models at different network stack layers. We then explore FHDnn properties that how to
enhance learning robustness under these conditions and design techniques for further improvement.

5.3.1 Noisy Aggregation. In conventional procession, the transmitter performs three steps to
generate the wireless signal from data: source coding, channel coding, and modulation. First, a
source encoder removes the redundancies and compresses the data. Then, to protect the compressed
bitstream against the impairments introduced by the channel, a channel code is applied. The coded
bitstream is finally modulated with a modulation scheme which maps the bits to complex-valued
samples (symbols), transmitted over the communication link.
The receiver inverts the above operations, but in the reverse order. A demodulator first maps

the received complex-valued channel output to a sequence of bits. This bitstream is then decoded
with a channel decoder to obtain the original compressed data; however, it might be possibly
corrupted due to the channel impairments. Lastly, the source decoder provides a (usually inexact)
reconstruction of the transmitted data by applying a decompression algorithm.
For noisy aggregation, as an alternative of the conventional pipeline, we assume uncoded

transmission [15]. This scheme bypasses the transformation of the model to a sequence of bits,
which are then need to be mapped again to complex-valued channel inputs. Instead, the real model
parameter values are directly mapped to the complex-valued samples transmitted over the channel.
Leveraging the properties of uncoded transmission, we can treat the channel as formulated in
Equation (20), where the additive noise is directly applied to model parameters. The channel output
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received by the server for client 𝑘 at round 𝑡 is given by:

w̃𝑘
𝑡 = w𝑘

𝑡 + n𝑘𝑡 (20)

where n𝑘𝑡 ∼ N(0, 𝜎2𝑡,𝑘 ) is the 𝑑-dimensional additive noise. The signal power and noise power are
computed as E∥w𝑘

𝑡 ∥2 = 𝑃𝑡,𝑘 and E∥n𝑘𝑡 ∥2 = 𝜎2𝑡,𝑘 , respectively. The signal-to-noise ratio (SNR) is:

𝑆𝑁𝑅𝑡,𝑘 =
E∥w𝑘

𝑡 ∥2

E∥n𝑘𝑡 ∥2
=
𝑃𝑡,𝑘

𝜎2
𝑡,𝑘

(21)

An immediate result of federated bundling is the improvement in the SNR for the global model.
When the class hypervectors from different clients are bundled at the server, the signal power scales
up quadratically with the number of clients 𝑁 , whereas the noise power scales linearly. Assuming
that the noise for each client is independent, we have the following relation:

𝑆𝑁𝑅𝑡 =
E
[ ∑𝑁

𝑘=1 w𝑘
𝑡

]
E
[ ∑𝑁

𝑘=1 n𝑘𝑡
] ≈ 𝑁 2𝑃𝑡,𝑘

𝑁𝜎2
𝑡,𝑘

= 𝑁 × 𝑆𝑁𝑅𝑡,𝑘 (22)

Notice that the effect of noise is suppressed by 𝑁 times due to bundling. This claim can also be
made for the FedAvg [33] framework over CNNs. However, even though the noise reduction factor
is the same, the impact of the small noise might be amplified by large activations of CNN layers. In
FHDnn, we do not have such problem as the inference and training operations are purely linear.
One other difference of FHDnn from CNNs is its information dispersal property. HD encoding

produces hypervectors which have holographic representations, meaning that the information
content is spread over all the dimensions of the high-dimensional space and no dimension in a
hypervector is more responsible for storing any piece of information than others. Since the noise
in each dimension can be also assumed independent, we can leverage the information spread to
further eliminate noise.
Consider the random projection encoding described in Section 3.1, which is also illustrated

by Fig. 2a. Let the encoding matrix Φ ∈ R𝑑×𝑛 expressed in terms of its 𝑑 row vectors, i.e., Φ =

[Φ1,Φ2, ...,Φ𝑑 ]𝑇 . Then, the hypervector formed by encoding information x ∈ X can bewritten as h =

[Φ𝑇1 x,Φ𝑇2 x, ...,Φ𝑇
𝑑

x]𝑇 , where x = [𝑥1, 𝑥2, ..., 𝑥𝑛]𝑇 . As implied by this expression, the information is
dispersed over the hypervectors uniformly. Now consider additive noise over the same hypervector
such that h + n = [Φ𝑇1 x + 𝑛1,Φ𝑇2 x + 𝑛2, ...,Φ𝑇𝑑 x + 𝑛𝑑 ]𝑇 . We can reconstruct the encoded information
from the noisy hypervector h̃ = h + n as follows:

x ≈
[ 1
𝑑

𝑑∑︁
𝑖=1

Φ𝑖,1h̃𝑖 ,
1
𝑑

𝑑∑︁
𝑖=1

Φ𝑖,2h̃𝑖 , ...,
1
𝑑

𝑑∑︁
𝑖=1

Φ𝑖,𝑛h̃𝑖
]

(23)

where h̃𝑖 = Φ𝑇𝑖 x + 𝑛𝑖 are the elements of the noisy hypervector. The noise variance is then reduced
by the averaging operation, similar to the case in Equation (22). Therefore, in HD computing,
the noise is not only suppressed by bundling accross models from different clients, but also by
averaging over the dimensions within the same hypervector. We demonstrate this over an example
where we encode a sample from the MNIST dataset, add Gaussian noise, then reconstruct it. Fig. 7
shows the original image, noisy image in the sample space, and reconstructed image for which the
noise was added in the hyperdimensional space.
Finally, there is a “flying under the radar” principle for federated learning over noisy channel.

The analysis in [58] points out since SGD is inherently a noisy process, as long as the channel noise
do not dominate the SGD noise during model training, the convergence behavior is not affected. As
a result, FHDnn’s can maintain good convergence performance since the noise is greatly suppressed
during the training process.
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Original Image Noisy Image Retrieved Image

Fig. 7. Noise robustness comparison
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Bit
Error

= 1.56 × 10−1

Fig. 8. Single bit error on a floating-point number

5.3.2 Bit Errors. In a federated learning scenario, since the central server needs to aggregate
parameters from each client and continuously update the global model, bit inconsistencies during
communication with any client may cause the final model to fail. Therefore, Bit Error Rate (BER) is
an important metric to evaluate the robustness of federated learning systems.
BER quantifies how accurately the receiver can decode transmitted data by measuring the

frequency of bit errors, which are instances where the received digital symbols differ from their
transmitted counterparts. These errors are typically assessed by the Hamming distance between
the input bitstream of the channel encoder and the output bitstream of the channel decoder. Let ŵ
represent the binary-coded model parameters communicated to the server. To model bit errors, the
communication channel is assumed to be a binary symmetric channel (BSC), which flips each bit in
ŵ independently with a probability 𝑝𝑒 (e.g., 0→ 1). The received bitstream at the server for client
𝑘 during round 𝑡 is then given as:

˜̂w
𝑘

𝑡 = ŵ𝑘
𝑡 ⊕ e𝑘𝑡 (24)

where e𝑘𝑡 is the binary error vector and ⊕ denotes modulo 2 addition. Given a specific vector v of
Hamming weight wt(v), the probability that e𝑘𝑡 = v is given by

P(e𝑘𝑡 = v) = 𝑝wt(v)𝑒 (1 − 𝑝𝑒 )𝑚−wt(v) (25)

The bit error probability, 𝑝𝑒 , is a function of both the modulation scheme and the channel coding
technique. Assuming lossless source coding, to conclude the transmission, the corrupted bit stream
in Equation (24) is ultimately reconstructed to a real-valued model, i.e., ˜̂w

𝑘

𝑡 → w̃𝑘
𝑡 .

Bit errors can have a detrimental effect on the training accuracy, especially for CNNs. At worst
case, a single bit error in one client in one round can fail the whole training. In Fig. 8 we give an
example of how much difference a single bit error can make for the standard 32 bit floating point
CNN weights. In floating point notation, a number consists of three parts: a sign bit, an exponent,
and a fractional value. In IEEE 754 floating point representation, the sign bit is the most significant
bit, bits 31 to 24 hold the exponent value, and the remaining bits contain the fractional value. The
exponent bits represent a power of two ranging from -127 to 128. The fractional bits store a value
between 1 and 2, which is multiplied by 2𝑒𝑥𝑝 to give the decimal value. This example shows that
one bit error in the exponent can change the weight value from 0.15625 to 5.31 × 1037.

The bit errors are contagious because a parameter from one client gets aggregated to the global
model, then communicated back to all clients. Furthermore, errors propagate through all commu-
nication rounds because local training or aggregation does not completely change the parameter
value, but only apply small decrements. For instance, assume a federated learning scenario with 100
clients and one bit error in a client’s model as in the above example. After 10 rounds of training, the
CNN weight for the global model will be on the order of ∼ 5.31×1037

10010 = 5.31 × 1017, still completely
failing the whole model. Consider ResNet-50, which has 20 million parameters, so training 100
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clients even over a channel with 𝑝𝑒 = 10−9 BER results in two errors per round on average, making
model failure inevitable.

Scale Up Rounding Scale Down

Transmitter Receiver

𝒄𝒌 ො𝒄𝒌

𝑮 𝟏/𝑮

Fig. 10. Quantizer scheme

A similar problem exists with HD model parameters, but to a lesser extent because the hyper-
vector encodings use integer representations. Fig. 9 implies that the parameters can also change
significantly for the HD model. Particularly, errors in the most significant bits (MSB) of integer
representation lead to higher accuracy drop. We propose a quantizer solution to prevent this issue.
The adopted quantizer design is illustrated in Fig. 10. Inspired by the classical quantization methods
in communication systems, we leverage scaling up and scaling down operations at the transmitter
and the receiver respectively. This can be implemented by the automatic gain control (AGC) module
in the wireless circuits. For a class hypervector c𝑘 , 𝑘 ∈ {1, ..., 𝐾}, the quantizer output 𝑄 (c𝑘 ) can
be obtained via the following steps:
(1) Scale Up: Each dimension in the class hypervector, i.e. 𝑐𝑘,𝑖 , is amplified with a scaling factor

denoted quantization gain 𝐺 . We adjust the gain such that the dimension with the largest
absolute value attains the maximum value attainable by the integer representation. Thus,
𝐺 = 2𝐵−1−1

max(𝑐𝑘 ) , where 𝐵 is the bitwidth.
(2) Rounding: The scaled up values are truncated to only retain their integer part.
(3) Scale Down: The receiver output is obtained by scaling down with the same factor 𝐺 .
In this way, bit errors are applied to the scaled up values. Intuitively, we limit the impact of

the bit error on the models. The prediction is realized by a normalized dot-product between the
encoded query and class hypervectors, according Equation (3). Therefore, the ratio between the
original parameter and the received (corrupted) parameter determines the impact of the error on
the dot-product. Without our quantizer, this ratio can be very large whereas after scaling up then
later down, it is diminished. Fig. 9 demonstrates this phenomenon. The ratio between the corrupted
and the original parameter is 𝑐𝑘,𝑖

𝑐𝑘,𝑖
=

2,071
7 ≈ 295.9. The ratio decreases to only 𝑐𝑘,𝑖

𝑐𝑘,𝑖
=

12,005
9,973 ≈ 1.2

between the scaled versions.

5.3.3 Packet Loss. At the physical layer of the network stack, errors manifest as additive noise or bit
flips directly affecting the transmitted data. In contrast, at the network and transport layers, errors
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are typically observed as packet losses. The interplay of network and protocol specifications defines
the overall error characteristics, which the data transmission process must accommodate and
mitigate. The type of errors allowed, whether bit errors or packet losses, is determined by the error
control mechanism. For the previous error model, we assumed that the bit errors are permitted to
propagate through the transport hierarchy. This assumption holds for a class of protocols designed
for error-resilient applications capable of handling bit errors [56]. In some protocols, the reaction
of the system to any number of bit errors is to drop the corrupted packets [37]. These protocols
typically employ error-detection mechanisms such as cyclic redundancy checks (CRC) or checksums
to identify bit errors. In such cases, the communication channel can be considered bit-error-free
but packet-lossy. To evaluate performance in this context, we use the packet error rate (PER) as a
key metric, with its expected value referred to as the packet error probability, 𝑝𝑝 . For a packet of
length 𝑁𝑝 bits, this probability can be expressed as: 𝑝𝑝 = 1 − (1 − 𝑝𝑒 )𝑁𝑝 .

The common solution for dealing with packet losses and guarantee successful delivery is to use
a reliable transport layer communication protocol, e.g., transmission control protocol (TCP), where
various mechanisms including acknowledgment messages, retransmissions, and time-outs are
employed. To detect and recover from transmission failures, these mechanisms incur considerable
communication overhead. Therefore, for our setup we adopt user datagram protocol (UDP), another
widely used transport layer protocol. UDP is low-latency and have much less overhead compared
to TCP, but it is unreliable and cannot guarantee packet delivery. HDC’s information dispersal and
holographic representation properties are also beneficial for packet losses. Another direct result of
these concepts is obtaining partial information on data from any part of the encoded information.
The intuition is that any portion of holographic coded information represents a blurred image of
the entire data. Then, each transmitted symbol–packets in our case–contains an encoded image of
the entire model.
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Fig. 11. Impact of partial information on similarity check (left) and classification accuracy (right)

We demonstrate the property of obtaining partial information as an example using a speech
recognition dataset [1]. As Fig. 11(a) showing, after training the model, we remove the dimensions
of a certain class hypervector in a random fashion. Then we perform a similarity check to figure
out what portion of the original dot-product value is retrieved. The same figure shows that the
amount of information retained scales linearly with number of remaining dimensions. Fig. 11(b)
further clarifies our observation. We compare the dot-product values across all classes and find the
class hypervector with the highest similarity. Only the relative dot-product values are important
for classification. So, it is enough to have the highest dot-product value for the correct class, which
holds true with ∼ 90% accuracy even when 80% of the hypervector dimensions are removed.

5.4 Strategies for Improving Communication Efficiency
Although the HDC model is much smaller than the DNN model, it still puts some pressure on IoT
devices with limited resources in large-scale distributed communication. In order to further improve
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the communication efficiency of FHDnn, we further investigate the structure and properties of
the class of hypervectors and design three methods: 1). binarized differential transmission, 2).
subsampling, and 3). sparsification & compression.

5.4.1 Binarized Differential Transmission. At the beginning of each round, the central server
broadcasts the latest global HD model, C𝑡 , to all clients. Then, before performing local updates,
each client makes a copy of this global model. Instead of sending the local updated models C𝑘𝑡+1 at
the aggregation step, the clients send the difference between the previous model and the updated
model, i.e., C𝑘𝑡+1 − C𝑡 . We call this operation differential transmission. As shown in Equation (26),
we binarize the difference to reduce the communication cost by 32x, going from 32-bit floating
point to 1-bit binary transmission.

ΔC𝑘
𝑏𝑖𝑛

= sign(C𝑘𝑡+1 − C𝑡 ), ∀𝑘 (26)

The central server receives and aggregates the differences, then adds it to the global model as:

C𝑡+1 = C𝑡 +
𝑁∑︁
𝑘=1

C𝑘
𝑏𝑖𝑛

(27)

This global model is broadcasted back to the clients. Such binarization framework is not possible
for the original federated bundling approachwhere clients communicate their full models. Binarizing
the models itself instead of the ‘difference’ results in unstable behavior in training. Therefore, we
utilize binarized differential transmission whose stability can be backed by studies on similar
techniques. Some previous work [4] has shown that in distributed optimization, only passing the
symbols of each small batch of random gradients can achieve the convergence rate of full-precision
SGD-level.

5.4.2 Subsampling. In this approach, the clients only send a subsample of their local model to
the central server. Each client forms and communicates a subsample matrix Ĉ𝑘𝑡+1, which is formed
from a random subset of the values of C𝑘𝑡+1. The server then receives and averages the subsampled
client models, producing the global update C𝑡+1 as: Ĉ𝑡+1 = 1

𝑁

∑𝑁
𝑘=1 Ĉ𝑘𝑡+1. The subsample selection is

completely randomized and independent for each client in each round. Therefore, the average of
the sampled models at the server is an unbiased estimator of their true average, i.e., E∥Ĉ𝑡 ∥ = C𝑡 .
We can achieve the desired improvement in communication by changing the subsampling rate. For
example, if we subsample 10% of the values of C𝑘𝑡+1, the communication cost is reduced by 10x.

5.4.3 Sparsification & Compression. The objective of this approach is to identify and remove the
elements (dimensions) of each class hypervector that have minimal impact on model performance.
As discussed in Section 3.2, given a query hypervector, inference is done by comparing it with all
class hypervectors to find the one with the highest similarity. The similarity is typically taken to be
the cosine similarity and calculated as a normalized dot-product between the query hypervector and
class hypervectors. The elements of a query hypervector are input dependent and changes from one
input to another one. Due to the randomness introduced by HDC encoding, the query hypervectors,
on average, have a uniform distribution of values in all dimensions. Under this assumption, we need
to find and drop the elements of class hypervectors that have minimal impact on cosine similarity.
To identify the least impactful elements of each class hypervector, we select those with the smallest
absolute values and set them to zero since they have the least contribution to the dot-product
computation of cosine similarity. For instance, in the case of the 𝑖𝑡ℎ class hypervector, we identify
𝑆 elements with the minimum absolute values as follows: min{𝑐𝑖

𝑑
, ..., 𝑐𝑖2, 𝑐

𝑖
1}𝑆 . To make a model

with 𝑆% sparsity, we make 𝑆
100 × 𝑑 elements of each class hypervector zero. Then, we employ the
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Compressed Sparse Column (CSC) [43] to compress the sparse model. CSC stores only the non-zero
data values and the number of zero elements between two consecutive non-zero elements.

6 EXPERIMENTAL ANALYSIS
In this section, we demonstrate the good performance of FHDnn through systematic experiments.
We first present the dataset and settings used for evaluation and test the performance of FHDnn in
a reliable communication scenario (Section 6.1). We focus on the comparison of FHDnn and CNN
in accuracy, communication efficiency and energy consumption (Section 6.2-6.4). Next, we test and
analyze the performance of FHDnn under three different unreliable network settings: packet loss,
noise injection, and bit errors (Section 6.5). Finally, we further evaluate the 3 proposed strategies for
improving communication efficiency in Section 6.6, including binarized differential transmission,
subsampling, and sparsification & compression.

Fig. 12. Accuracy of FHDnn and ResNet on dif-
ferent datasets

Fig. 13. Accuracy and Number of communica-
tion rounds for various hyperparameters

6.1 Experimental Setup
We evaluate FHDnn on MNIST [11], FashionMNIST[60], CIFAR10 [36], and Caltech101 [39] datasets
using PyTorch. As introduced in Section 5.1, FHDnn utilizes a pre-trained SimCLR model to extract
initial feature vectors, which are subsequentlymapped to high-dimensional encodings. Then, the HD
learner employs these high-dimensional encodings to train and update the entire federated learning
model. The HD learner model is randomly initialized. To compare the performance of FHDnn and
the original CNN, we compare two classical CNN networks. Specifically, we used ResNet-18 [18] to
compare on FashionMNIST, CIFAR10 and Caltech101 datasets. For MNIST, since this dataset is too
small, deep networks like ResNet are prone to overfitting, we use a simpler network (CNN with
two 5x5 convolutional layers, two fully connected layers, and ReLU activation). Our simulations
involve an IoT network with 𝑁 = 100 clients and one server, running for 100 communication
rounds. We tune hyperparameters 𝐸 (local training epochs), 𝐵 (local batch size), and 𝐶 (fraction
of participating clients), applying the best ResNet parameters to FHDnn for direct comparison.
Data partitioning is examined under both IID (evenly shuffled) and Non-IID (label-sorted shards)
conditions. Performance evaluations are conducted on Raspberry Pi 4[46] (quad-core Cortex-A72,
1.5GHz, 4GB RAM) and NVIDIA Jetson[9] (quad-core Cortex-A57 CPU, 128-core Maxwell GPU,
4GB RAM) to assess FHDnn’s efficiency on edge devices. We repeated the experiment 100 times
with different random seeds and report the average results to avoid the influence of randomness on
the results.

6.2 Overall Accuracy of FHDnn
Fig. 12 compares the test accuracy of FHDnn with ResNet on MNIST, CIFAR-10, FashionMNIST,
and Caltech101 datasets after 100 federated training rounds. For FashionMNIST and MNIST, the
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accuracy of FHDnn is comparable to that of ResNet in both IID and non-IID scenarios. The accuracy
consistently exceeds 80%, demonstrating the good performance of FHDnn in handling complex
image datasets. On CIFAR-10 and Caltech101, the accuracy of FHDnn is higher or comparable to
ResNet for both IID and non-IID settings. Especially for non-iid data, on the Caltech101 dataset,
ResNet cannot maintain accuracy, while FHDnn performs much better. Fig. 13 shows test accuracy
over communication rounds for CIFAR-10, displaying the smoothed conditional mean across
hyperparameters (E,B,C) for IID and Non-IID distributions. Experiments demonstrate that FHDnn
not only achieves superior accuracy, but also greatly reduces the number of required communication
rounds, allowing it to quickly achieve convergence even in challenging non-iid settings. For instance,
FHDnn reaches near-optimal accuracy in fewer than 25 communication rounds, maintaining a
steady performance thereafter. ResNet, however, requires significantly more communication rounds
(≈ 75) to achieve its stable level of accuracy. As a result, FHDnn significantly reduces the reliance
on extensive communication with the same target accuracy, which a key advantage in distributed
systems such as in an FL scenario.

6.3 Energy Consumption of FHDnn
Local training is computationally expensive for constrained IoT devices, which was one of the main
drivers for centralized learning over many years. Particularly, CNN training involves complicated
architectures and backpropagation operation that is very compute intensive. In addition, this has
to be repeated for many communication rounds. HD on the contrary is lightweight, low-power,
and fast. Table 4 quantitatively compares the computation time and energy consumption of FHDnn
and ResNet local training on 2 different edge device platforms. On Raspberry Pi, FHDnn achieves
a 35% reduction in training time and energy consumption compared to ResNet, while on Nvidia
Jetson, it outperforms ResNet with an 80% reduction in both metrics. These results underscore that
FHDnn has significant advantages over ResNet, enabling faster and more sustainable edge-based
training. It’s lightweight and energy-efficient design, making it highly suitable for IoT scenarios
where computational and power resources are limited.

Table 4. Performance of FHDnn on Edge Devices

Device Training Time (Sec) Energy (J)
FHDnn ResNet FHDnn ResNet

Raspberry Pi 858.72 1328.04 4418.4 6742.8
Nvidia Jetson 15.96 90.55 96.17 497.572

6.4 Communication Efficiency of FHDnn
We compare the communication efficiency of FHDnn with ResNet in federated learning, targeting
an accuracy of 80%. The data transmitted per client is calculated as 𝑑𝑎𝑡𝑎𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 = 𝑛𝑟𝑜𝑢𝑛𝑑𝑠 ×
𝑢𝑝𝑑𝑎𝑡𝑒𝑠𝑖𝑧𝑒 . The number of parameters of ResNet-18 model is about 11.7MB. With 75 rounds of
communication, the client needs to send about 3.51GB of data. In comparison, the update size of
FHDnn is only 1MB, and the convergence speed is 3 times faster than that of ResNet-18. Therefore,
the total communication cost for the client is only about 25MB. FHDnn also significantly reduces
training time. Under LTE networks with 5dB SNR, 5MHz bandwidth, and 10ms frame duration,
FHDnn converges in 1.1 hours for CIFAR IID and 3.3 hours for CIFAR Non-IID. In contrast, ResNet
takes 374.3 hours for both scenarios. This improvement is due to FHDnn’s ability to communicate
at a rate of 5.0 Mbits/sec by tolerating errors, whereas ResNet achieves only 1.6 Mbits/sec under
error-free communication.
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6.5 Performance of FHDnn in Unreliable Communication
In this section, we evaluate and analyze the performance of FHDnn and ResNet-18 under several
unreliable communication channels, packet loss, noise aggregation and bit errors respectively. To
ensure a fair comparison, we employ the same hyperparameters for both models and evaluate
them on the CIFAR-10 dataset. The detailed experimental settings are as follows: local training
rounds 𝐸 = 2, sampling ratio𝐶 = 0.2, batch size 𝐵 = 10. The packet loss rate is set from 0 to 0.6, the
signal-to-noise ratio (SNR) ranges from −10 to 25, and the bit error rate (BER) varies from 10−19 to
1. The detailed experimental results are presented as follows.

Fig. 14. Accuracy comparison of FHDnn with ResNet with packet loss conditions

1). Packet Loss: As shown in Fig. 14, if the packet loss rate is extremely small, e.g., below 10−2,
ResNet has very minimal accuracy loss. However, for more, realistic packet loss rates such as 20%
the CNN model fails to converge. When there is packet loss, the central server replaces the model
weights from the lost packets with zero values. For example, 20% packet loss rate implies 20% of the
weights are zero. Moreover, this loss is accumulative as the models are averaged during each round
of communication thereby giving the CNNs no chance of recovery. In contrast, FHDnn is highly
robust to packet loss with almost no loss in accuracy. For FHDnn, since the data is distributed
uniformly across the entire hypervector, a small amount of missing data is tolerable. However, since
CNNs have a more structured representation of data with interconnections between neurons, the
loss of weights affects the performance of subsequent layers which is detrimental to its performance.

Fig. 15. Accuracy comparison of FHDnn with ResNet with gaussian noise conditions

2). Gaussian Noise:We experiment with different SNR to simulate noisy links, illustrated in
Fig. 15. For higher SNRs, e.g., 25, the accuracy of the CNN model decreases by approximately 8%,
while the accuracy of the FHDnn remains almost unchanged. When the SNR is less than 10, the
CNN model fails completely, both in IID and non-IID settings. Its accuracy drops to 10%, which
is not even as good as the performance of random classification. In contrast, the FHDnn model
maintains stability and excellent accuracy even under extreme noise conditions. In particular,
non-IID data usually introduces additional variability, but the degradation of FHDnn’s performance
in non-IID scenarios is also small. This further demonstrates that the FHDnn model has excellent
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robustness to noise and maintains high accuracy even at low SNR values where the CNN model
fails completely, making it well suited for the noisy environments often encountered in real-world
IoT and federated learning applications.

Fig. 16. Accuracy comparison of FHDnn with ResNet with bit errors conditions

3). Bit Errors: As shown in Fig. 16, the CNN accuracy drops much faster than the FHDnn when
a bit error occurs. At 10−9 BER conditions, it’s accuracy drops drastically to the level of a random
classification. This is due to the fact that the weights of CNN are floating point numbers and a
single bit flip can significantly change the weights. In contrast, FHDnn can have a significantly
better ability to withstand the effects of bit errors. At 10−9 BER, the accuracy for IID data is still
close to 80%. All models fail when the BER reaches extreme levels close to 1. This is because the
BER dominates communication and corrupts learning. However, before this catastrophic drop,
FHDnn shows greater stability over a wider range of BERs. This is due to the fact that FHDnn uses
an integer representation, which is to some extent going to be more tolerant of bit errors, and the
quantization method we designed in section 5.3 with scaling further mitigates the errors.

6.6 Performance of proposed Communication Efficiency Strategies
To evaluate the strategies we design in the Section 5.4 to improve the communication efficiency of
FHDnn, we conduct extensive experiments. Table 5 summary the final accuracy after 100 rounds
of training and the improvement in communication cost for the respective approaches on MNIST
dataset.

Table 5. Performance of Communication Efficiency Strategies

Method Final Accuracy Improvement
Baseline 94.1% -

Binarized Differential Transmission 91.2% 32x
50% Subsampling 91.1% 2x

50% Sparsification & Compression 90.0% 2x
10% Subsampling 90.7% 10x

90% Sparsification & Compression 91.6% 10x

The baseline model achieves a final accuracy of 94.1%, with no communication improvement
(compression factor = 1×). Binarized differential transmission method achieves a final accuracy of
91.2%, showing a marginal drop of 2.9% compared to the baseline. However, it provides a substantial
32× improvement in communication efficiency, making it highly effective for reducing communi-
cation overhead with minimal accuracy loss. For subsampling and sparsification & compression
approaches, the communication improvement depends on the percentage of the model values that
are subsampled or sparsified. For example, if we subsample 10% of the model, than the communica-
tion cost is reduced by 10x. Or, if we sparsify the model by 90%, the reduction is 10× again. We
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present the final accuracy and improvement in communication cost at different subsampling and
sparsification percentages. The accuracy of all methods remains above 90%, which indicates that
the several strategies we devised to improve communication efficiency are very effective and have
very limited impact on model performance. After the optimization of the communication strategy,
the communication cost of FHDnn is reduced by 2112× compared with ResNet-18, and the local
computation and energy consumption are reduced by 48-192×.

7 CONCLUSION
In this paper, we introduce a lightweight, communication-efficient and highly robust federated
learning framework, FHDnn. It first extracts complex features from raw data using the comparative
learning framework SimCLR, and then maps them into high-dimensional vectors and updates
the federated learning model using the HDC approach. This strategy speeds up the learning,
reduces the transmission cost, and can achieve high accuracy on complex image tasks. Secondly, we
analyze and prove in detail the complexity of performing HDC in a generalized federated learning
framework, providing important theoretical guarantees. Finally, we design several more efficient
communication strategies to improve the communication efficiency of FHDnn by 32×. We evaluate
FHDnn through extensive experiments. The results show that FHDnn improves the convergence
speed by 3×, reduces the communication cost by 2112×, and reduces the local client computation
and energy consumption by 192× compared to the CNN-based federated learning approach. In
addition, it has better robustness to unreliable communication setups including bit errors, noise,
and packet loss.
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A PROOF OF THEOREM 1
A.1 Additional Notation
Let w𝑘

𝑡 be the model maintained on the 𝑘-th device at the 𝑡-th step, and w𝑡 be the global model.
The clients communicate after 𝐸 local epochs for global aggregation. Let I𝐸 be the set of those
aggregation steps, i.e., I𝐸 = {𝑛𝐸 | 𝑛 = 1, 2, ...}, so the client models are aggregated if 𝑡 + 1 ∈
I𝐸 . We introduce an additional variable v𝑘𝑡+1 to represent the result of the SGD steps where no
communication occurs, similar to [42, 51]. The following equation describes the local updates of
the clients:

v𝑘𝑡+1 = w𝑘
𝑡 − 𝜂𝑡∇𝐹𝑘 (w𝑘

𝑡 , 𝜉
𝑘
𝑡 )

If 𝑡 + 1 ∉ I𝐸 , we have w𝑘
𝑡+1 = v𝑘𝑡+1 because there is no communication and aggregation of models.

On the other hand, if 𝑡 + 1 ∈ I𝐸 , the randomly selected clients 𝑘 ∈ S𝑡+1 communicate their models
which are then aggregated and averaged at the server. This is summarized by the equation below.

w𝑘
𝑡+1 =

{
v𝑘𝑡+1, if 𝑡 + 1 ∉ I𝐸

1
|S𝑡+1 |

∑
𝑘∈S𝑡+1 v𝑘𝑡+1, if 𝑡 + 1 ∈ I𝐸

The variable w𝑘
𝑡+1 can be interpreted as the model obtained directly after the communication

steps. We define two virtual sequences v𝑡+1 =
∑𝑁
𝑘=1 𝑝𝑘v𝑘𝑡 and w𝑡+1 =

∑𝑁
𝑘=1 𝑝𝑘w𝑘

𝑡 . Notice that if
we apply a single step of SGD to w, we get v𝑡+1. These sequences are denoted virtual because
both are not available when 𝑡 + 1 ∉ I𝐸 and we can only access w𝑡+1 when 𝑡 + 1 ∈ I𝐸 . We also
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define g𝑡 =
∑𝑁
𝑘=1 𝑝𝑘∇𝐹𝑘 (w𝑘

𝑡 ) and g𝑡 =
∑𝑁
𝑘=1 𝑝𝑘∇𝐹𝑘 (w𝑘

𝑡 , 𝜉
𝑘
𝑡 ) for convenience of notation. Therefore,

v𝑡+1 = w𝑡 − 𝜂𝑡g𝑡 and E∥g𝑡 ∥ = g𝑡 . There are two sources of randomness in the following analysis.
One results from the stochastic gradients and the other is from the random sampling of devices. To
distinguish them, we use the notation ES𝑡 (·) when we take expectation over the randomness of
stochastic gradients.

A.2 Lemmas
We present the necessary lemmas that we use in the proof of Theorem 1. These lemmas are derived
and established in [42], so we defer their proofs.

Lemma 1 (Result of One Step SGD). Assume Properties 1 and 2 hold. If 𝜂𝑡 ≤ 1
4𝐿 , we have

E∥v𝑡+1 −w∗∥2 ≤ (1 − 𝜂𝑡 𝜇)E∥w𝑡 −w∗∥2

+𝜂2𝑡E∥g𝑡 − g𝑡 ∥2 + 6𝐿𝜂2𝑡 Γ + 2E
[ 𝑁∑︁
𝑘=1

𝑝𝑘 ∥w𝑡 −w𝑘
𝑡 ∥2

]
.

Lemma 2 (Bounding the Variance). Assume Property 3 holds. It follows that

E∥g𝑡 − g𝑡 ∥2 ≤
𝑁∑︁
𝑘=1

𝑝2
𝑘
𝜎2
𝑘
.

Lemma 3 (Bounding the Divergence of w𝑘
𝑡 ). Assume Property 4 holds, 𝜂𝑡 is non-increasing and

𝜂𝑡 ≤ 2𝜂𝑡+𝐸 for all 𝑡 ≤ 0. It follows that

E
[ 1
𝑁

𝑁∑︁
𝑘=1
∥w𝑡 −w𝑘

𝑡 ∥2
]
≤ 4𝜂2𝑡 (𝐸 − 1)2𝐺2.

Lemma 4 (Unbiased Sampling). If 𝑡 + 1 ∈ I𝐸 , we have
ES𝑡 [w𝑡+1] = v𝑡+1

Lemma 5 (Bounding the Variance of w𝑘
𝑡 ). For 𝑡 + 1 ∈ I𝐸 , assume that 𝜂𝑡 ≤ 2𝜂𝑡+𝐸 for all 𝑡 ≥ 0. We

then have

ES𝑡 ∥v𝑡+1 −w𝑡+1∥2 ≤
𝑁 − 𝐾
𝑁 − 1

4
𝐾
𝜂2𝑡 𝐸

2𝐺2

A.3 Theorem 1
We have w𝑡+1 = v𝑡+1 whether 𝑡 + 1 ∈ I𝐸 or 𝑡 + 1 ∉ I𝐸 . Then, we take the expectation over the
randomness of stochastic gradient and use Lemma 1, Lemma 2, and Lemma 3 to get

E∥w𝑡+1 −w∗∥2 = E∥v𝑡+1 −w∗∥2

≤ (1 − 𝜂𝑡 𝜇)E∥w𝑡 −w∗∥2 + 𝜂2𝑡E∥g𝑡 − g𝑡 ∥2

+ 6𝐿𝜂2𝑡 Γ + 2E
[ 𝑁∑︁
𝑘=1

𝑝𝑘 ∥w𝑡 −w𝑘
𝑡 ∥2

]
≤ (1 − 𝜂𝑡 𝜇)E∥w𝑡 −w∗∥2

+ 𝜂2𝑡
[ 𝑁∑︁
𝑘=1

𝑝2
𝑘
𝜎2
𝑘
+ 6𝐿Γ + 8(𝐸 − 1)2𝐺2

]
.
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If 𝑡 + 1 ∈ I𝐸 , note that
∥w𝑡+1 −w∗∥2 = ∥w𝑡+1 − v𝑡+1 + v𝑡+1 −w∗∥2

= ∥w𝑡+1 − v𝑡+1∥2︸            ︷︷            ︸
𝐴1

+ ∥v𝑡+1 −w∗∥2︸          ︷︷          ︸
𝐴2

+ ⟨w𝑡+1 − v𝑡+1, v𝑡+1 −w∗⟩︸                         ︷︷                         ︸
𝐴3

.

When the expectation is taken over S𝑡+1, the term 𝐴3 vanishes because ES𝑡+1 [w𝑡+1 − v𝑡+1] = 0, that
is, w𝑡+1 is unbiased. If 𝑡 + 1 ∉ I𝐸 , 𝐴1 is vanished as w𝑡+1 = v𝑡+1. 𝐴2 can be bounded using Lemmas
1 to 3 and Lemma 5. It follows that

E∥w𝑡+1 −w∗∥2 ≤ (1 − 𝜂𝑡 𝜇)E∥w𝑡 −w∗∥2

+ 𝜂2𝑡
[ 𝑁∑︁
𝑘=1

𝑝2
𝑘
𝜎2
𝑘
+ 6𝐿Γ + 8(𝐸 − 1)2𝐺2

]
.

If 𝑡 + 1 ∈ I𝐸 , the term 𝐴1 can be additionally bounded using Lemma 5, then

E∥w𝑡+1 − v𝑡+1∥2 + E∥v𝑡+1 −w∗∥2

≤ (1 − 𝜂𝑡 𝜇)E∥w𝑡 −w∗∥2

+ 𝜂2𝑡
[ 𝑁∑︁
𝑘=1

𝑝2
𝑘
𝜎2
𝑘
+ 6𝐿Γ + 8(𝐸 − 1)2𝐺2 + 𝑁 − 𝐾

𝑁 − 1
4
𝐾
𝐸2𝐺2

]
.

Now, let Δ𝑡 = ∥w𝑡+1 −w∗∥2 for notational convenience. Also, let

𝐵 =

𝑁∑︁
𝑘=1

𝑝2
𝑘
𝜎2
𝑘
+ 6𝐿Γ + 8(𝐸 − 1)2𝐺2 + 𝑁 − 𝐾

𝑁 − 1
4
𝐾
𝐸2𝐺2.

We use a diminishing learning rate with 𝜂𝑡 =
𝛽

𝑡+𝛾 for some 𝛽 ≥ 1
𝜇
and 𝛾 > 0 such that 𝜂1 ≤

min{ 1
𝜇
, 1
4𝐿 } =

1
4𝐿 and 𝜂𝑡 ≤ 2𝜂𝑡+𝐸 . Now, we prove by induction that

Δ𝑡 ≤
𝑣

𝛾 + 𝑡
where

𝑣 = max{ 𝛽2𝐵

𝛽𝜇 − 1 , (𝛾 + 1)Δ0}.

The definition of 𝑣 ensures that it holds for 𝑡 = 0. If we assume the result holds for some 𝑡 > 0, it
follows

Δ𝑡+1 ≤ (1 − 𝜂𝑡 𝜇)Δ𝑡 + 𝜂2𝑡 𝐵

=

(
1 − 𝛽𝜇

𝑡 + 𝛾

) 𝑣

𝑡 + 𝛾 +
𝛽2𝐵

(𝑡 + 𝛾)2

=
𝑡 + 𝛾 − 1
(𝑡 + 𝛾)2 𝑣 +

[ 𝛽2𝐵

(𝑡 + 𝛾)2 −
𝛽𝜇 − 1
(𝑡 + 𝛾)2 𝑣

]
≤ 𝑣

𝑡 + 𝛾 + 1 .
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Then, by the strong convexity of 𝐹 (·),

E[𝐹 (w𝑡 )] − 𝐹 ∗ ≤
𝐿

2
Δ𝑡 ≤

𝐿

2
𝑣

𝛾 + 𝑡 .

If we choose the parameters as 𝛽 = 2
𝜇
, 𝛾 = max{8𝐿

𝜇
− 1, 𝐸} and define 𝜅 = 𝐿

𝜇
, then 𝜂𝑡 = 2

𝜇
1
𝛾+𝑡 . Using

the fact that max{𝑎, 𝑏} ≤ 𝑎 + 𝑏, we have

𝑣 ≤ 𝛽2𝐵

𝛽𝜇 − 1 + (𝛾 + 1)Δ0

= 4
𝐵

𝜇2
+ (𝛾 + 1)Δ0

≤ 4
𝐵

𝜇2
+
(
8
𝐿

𝜇
− 1 + 𝐸 + 1

)
Δ0

= 4
𝐵

𝜇2
+
(
8
𝐿

𝜇
+ 𝐸

)
∥w1 −w∗∥2.

Therefore,

E[𝐹 (w𝑡 )]−𝐹 ∗ ≤
𝐿

2(𝛾 + 𝑡)

[
4
𝐵

𝜇2
+
(
8
𝐿

𝜇
+ 𝐸

)
∥w1 −w∗∥2

]
=

2𝜅
𝛾 + 𝑡

[𝐵
𝜇
+
(
2𝐿 + 𝐸𝜇

4

)
∥w1 −w∗∥2

]
. (28)
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