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Abstract—Recent years have witnessed a significant expansion
in Internet-of-Things (IoT) applications. Although the battery
energy availability can be improved with energy harvesting, the
overall device reliability management has been overlooked in
the existing literature. State-of-the-art reliability models of solar
panels, electronics and rechargeable batteries show exponential
dependence of failures on temperature. This work is the first
to develop a comprehensive reliability deployment framework
for energy-harvesting IoT networks, reflecting the non-negligible
thermal stresses on each hardware component. Our frame-
work improves the reliability on both pre-deployment and post-
deployment stages. Prior to deployment, given the historical tem-
perature and solar radiation of the region, we formulate a Mixed
Integer Linear Program (MILP) to place the minimum number
of nodes, while ensuring (i) full target coverage, (ii) complete
connectivity, (iii) energy-neutral operation, and (iv) reliability
constraints at each deployed node. We propose a polynomial-
time heuristic, R-TSH, to approximate the optimal placement
in large-scale deployments. While R-TSH optimizes long-term
reliability, the prompt temperature or link quality differences
from the historical patterns can significantly degrade device
reliability after deployment. The post-deployment section of our
design consists of a reliability-driven routing algorithm, AODV-
Rel, that adapts to real-time environmental and link quality
changes. Extensive analysis is done using a real-world dataset
from the National Solar Radiation Database. Simulations in ns-
3 show that R-TSH meets all reliability constraints even after
5 years of deployment as compared to the state of the art. In
addition, it is 2000x faster than the optimal solution, while placing
only 28% more nodes. AODV-Rel further extends the minimal
operational lifetime by 1.5 and 2.8 months under temperature
deviation and wireless interference.

Index Terms—IoT Networks, Energy Harvesting, Reliability,
Sensor Deployment, Adaptive Routing.

I. INTRODUCTION

Recent years have witnessed a rapid deployment of Internet-
of-Things (IoT) for environmental monitoring such as in
Smart City [2] and Smart Agriculture [3] applications. Experts
predict that there will be 50 billion IoT devices globally by
2030 [4]. Energy harvesting techniques significantly prolong
the lifetime of IoT devices [5]. Existing work on the de-
ployment of energy harvesting sensor networks has studied
minimizing the deployment cost after ensuring: (i) coverage,
i.e., all points of interest (PoIs) are covered, (ii) connectivity,
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i.e., all devices are directly or indirectly connected to a
gateway, and (iii) energy-neutral operation [6], [7].

Although the energy availability can be enhanced with
energy harvesting, reliability degradation is often overlooked
in existing literature. Even with infinite energy sources, all
hardware components degrade over time and ultimately require
repair or complete replacement. As reported by Cisco [8], if
not managed carefully, maintenance expenditures can account
for up to 80% of the total IoT deployment costs. $3.2M/year
is spent on administrative labor and technical support due to
system failures for every 100,000 devices.

Previous works have shown that the failure rates, as mea-
sured by mean-time-to-failure (MTTF, i.e., the expected time
to failure), of electronics devices and solar harvesting systems
are exponentially related to temperature [9], [10]. The capacity
and the power output of batteries also degrade exponentially
in hot environments, while the aging status is quantified by
the State of Health (SoH) metric [11]. Starting from SoH of
100%, a battery reaches its end of life when SoH decreases to
80% regardless of the remaining charge [12]. Using state-of-
the-art reliability models and various chip core temperatures,
the MTTF ratio (compared to the MTTF baseline under 25 °C)
of electronic devices and the SoH of batteries after 5 years of
use are shown in Figure 1.

(a) MTTF ratio. (b) SoH after 5 years.

Fig. 1: Impact of chip core temperature on reliability. Higher
temperature significantly reduces the reliability.

To the best of our knowledge, a comprehensive reliability
deployment framework that includes key hardware compo-
nents in energy-harvesting IoT networks has not been studied
to date. Without such guidelines, reliability-driven deployment
and management becomes difficult, especially for outdoor
environmental monitoring at extreme temperatures.

In this paper, we develop a comprehensive reliability-driven
framework with two stages: (i) the pre-deployment stage
optimizes long-term sensor placement to manage the reliability
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of an energy-harvesting IoT network, (ii) the post-deploy-
ment stage adjusts routing in real time as a function of
environmental and link quality variations. Device placement
sets the upper bound on the reliability and useful life of
IoT networks. Once deployed, adaptive routing automatically
balances the load to approach that upper bound and mitigates
unexpected reliability degradations. Both stages consider the
effect of environmental conditions (such as temperature and
solar radiation) on reliability.

In summary, the contributions of this paper are:
(1) We propose a comprehensive reliability-aware deploy-

ment framework for energy-harvesting IoT networks in-
cluding pre- and post-deployment stages. We leverage
the state-of-the-art reliability models of solar panels,
electronics and battery state-of-health, all of which ex-
ponentially depend on temperature.

(2) In the pre-deployment stage, we formulate a Mixed
Integer Linear Program (MILP) for placing the minimal
number of sensors, while ensuring (i) reliability, (ii) full
coverage of points of interest (PoIs), (iii) complete con-
nectivity, and (iv) energy-neutral operation. We show
that the proposed problem is NP-complete, and offer a
polynomial-time heuristic, Reliability-driven Two-Stage
Heuristic (R-TSH) for large-scale deployments.

(3) In the post-deployment stage, we design an adaptive
routing algorithm, AODV-Rel, based on Ad-hoc On-
demand Distance Vector (AODV) to dynamically manage
reliability in real time. AODV-Rel balances reliability in
reaction to changes in the environmental conditions or
links quality.

(4) We evaluate the benefits of our framework using
real-world solar irradiance and ambient temperature
dataset from the National Solar Radiation Database
(NSRDB) [13]. The experiments are performed both
in MATLAB and in RelIoT1 [14], [15], a reliability
simulator based on ns-3 [16]. We conduct comprehensive
evaluation on the deployment decisions given by R-TSH
versus the optimal solution and existing heuristics, and
on the adaptive routing algorithm under temperature and
link quality variations. Our results indicate R-TSH meets
all reliability constraints with 28% more nodes than
the optimal solution, but executes 2000x faster. AODV-
Rel further extends the minimal operational lifetime of
deployed nodes by 2.8 months under nearby wireless
interference.

II. RELATED WORK

A. Sensor Deployment in Wireless Sensor Networks

Existing literature on sensor deployment mainly optimizes
coverage [17], connectivity [18], and network lifetime [19].
All published work optimizing coverage assumes single-use
batteries, so their network lifetime is limited. Application
requirements can be categorized into area coverage, target
coverage, and barrier coverage [20]. The optimization goal
is designing a network with a minimum deployment cost or

1RelIoT is available at: https://github.com/UCSD-SEELab/RelIoT

longest lifetime while satisfying the coverage and connectivity
requirements [21]. To find the optimal solution, grid placement
is transformed into integer programming models and solved
with conventional solvers. However, NP-hardness of integer
programming problems results in poor scalability, and there-
fore encourages efficient heuristics [17], [18], [22].

Yang et al. [6] is the first to formulate a sensor placement
problem to achieve energy-neutral operation with the goal
of covering fixed targets and ensuring connectivity to the
gateway. In addition to using Mixed Integer Linear Program-
ming (MILP) optimization, the authors proposed two greedy
heuristics that require 20% and 10% more sensors than their
MILP. The later work of Zhu et al. [7] considers the placement
of directional energy-harvesting sensors for target coverage.
They also consider the size of the solar panels at each site
as variables that determine the energy harvesting rate. Three
heuristics were offered, along with the corresponding analyses
on time complexity and performance bound. Nevertheless,
neither of [6] or [7] considered reliability, which can cause
significant problems in outdoor environments.

B. Reliability-Driven Network Deployment

Reliability has become increasingly important for large-
scale networks that may introduce enormous maintenance
costs. Previous works placed redundant nodes to enhance the
fault tolerance of the network. Extra nodes can be placed to
achieve k-coverage (i.e., any point of interest (PoI) needs to
be covered by at least : sensors) or m-connectivity (i.e., any
sensor is required to directly connect to < other nodes). Both
strategies temporarily mitigate the negative influence on net-
work functionality upon failures. However, very few existing
papers leverage the models of hardware failure mechanisms
and address how to preventively reduce the resulting failure
rates. Yu et al. [23] integrated single-use battery depletion
and electronics failure mechanisms to model and optimize
maintenance costs in sensor deployments. Their methodology
does not apply to energy-harvesting networks.

Our previous work [1] is the first to study reliability-driven
deployment in energy-harvesting sensor networks, where the
thermal-based reliability models of batteries and electronics
are considered. This paper extends and improves [1] in the
following ways: (i) it completes the reliability framework for
energy-harvesting systems by including thermal-based failure
models of solar panels, in addition to device and battery
reliability models; (ii) Besides sensor placement optimization
prior to deployment, we design an adaptive routing algorithm
for dynamic reliability management after deployment; and
(iii) a detailed evaluation of the generated deployments and
their properties is done with the state of the art ns-3-based
reliability simulator RelIoT [14], [15] using real-world data.

III. RELIABILITY MODELS OF ENERGY-HARVESTING
SYSTEMS

Reliability of a system is the probability '(C) that the
system will not fail until time C [9]. It is related to the
failure rate of a system, which shows a bathtub curve as a
function of time [24]. We focus on the useful lifetime of

https://github.com/UCSD-SEELab/RelIoT
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systems during which the failure rates are constant. Failures
in sensor networks can be categorized into link, software, and
hardware failures [25]. Both link and software failures can
be recovered or avoided with good design. In this paper, we
consider permanent hardware failures which are very costly,
as they require device repair or replacement.

Most energy-harvesting systems leverage the Harvest-Store-
Use Architecture [5], as shown in Figure 2. The harvesting
system includes solar panel(s) and a harvesting circuit for
power conversion [26]. The storage system uses supercapaci-
tors and/or rechargeable batteries. We focus on batteries in this
work as they have low cycle lifetime, e.g. 1000 cycles [27].
We next introduce the state-of-the-art reliability models for
solar panels, electronics and rechargeable batteries.

Fig. 2: Components of a solar energy-harvesting system con-
sidered in this paper. We consider reliability models for solar
panel, electronics and rechargeable batteries.

A. Solar Panel Reliability Model

Photovoltaic systems have exponential dependence between
the failure rate and temperature. We leverage the state-of-the-
art reliability model in [10], which is obtained from step-stress
aging tests on III-V high concentrator solar cells. The ratio of
solar panel’s MTTF in comparison to its counterpart under a
standard temperature of )A4 5 = 25°C is estimated as shown
below, where �0 is activation energy and : is Boltzmann
constant. )0<1 is the ambient temperature of the environment.

"))�B? ()0<1) = exp
[
�0

:

(
1

)0<1
− 1
)A4 5

)]
. (1)

B. Electronics Reliability Model

Previous research has studied common electronics failure
mechanisms such as time-dependent dielectric breakdown,
negative bias temperature instability, and electromigration, all
of which are exponentially dependent on the temperature [9],
[28]. We use the term core temperature to refer to the internal
temperature of a chip. The MTTF for each mechanism can
be modeled as a function of time, voltage, temperature, and
technological parameters. In [24], the authors showed that the
MTTF of all above-mentioned mechanisms share a similar
form depending on the core temperature )2 . We extract this
general expression to estimate MTTF as the ratio to the
baseline at )A4 5 = 25°C:

"))�4 ()2) = exp( �0
:)2
)/exp( �0

:)A4 5
), (2)

where �0 is the activation energy, : is Boltzmann’s constant.
According to the thermal dissipation model in [29], )2 linearly
depends on average power consumption % of device and
ambient temperature )0<1 at the deployed location:

)2 = :1% + :2)0<1 + :3. (3)

where :1, :2 and :3 are device-specific parameters obtained
by fitting into experimental traces.

C. Battery Reliability Model (SoH)

In contrast to the state-of-charge (SoC) model that predicts
the available charge in a battery, we utilize the state-of-health
(SoH) model, which denotes the aging level of a battery
in comparison when it is new. Although a battery can be
recharged with harvested energy, it loses its ability to deliver
energy, eventually making it unusable. The operational lifetime
of a battery is defined as the time when SoH reduces from 1
to 0.8 [12]. Battery aging consists of calendar aging and cycle
aging [30]. While calendar aging is exponentially accelerated
as a function of time, temperature, and state-of-charge stresses,
cycle aging additionally accounts for the degradation due to
the depth of discharge (DoD) during each charge-discharge
cycle. We use the state-of-the-art semi-empirical SoH model
in [12] for Lithium-Ion batteries. Since our goal is to optimize
long-term state-of-health, we focus on calendar aging with
time and temperature stresses:

(>� (C, )24;;) = exp
{
−:C C exp

[
:))A4 5

(
1 −

)A4 5

)24;;

)]}
. (4)

Here C is the elapsed time since deployment. )24;; is the
internal battery cell temperature and )A4 5 is the reference
temperature of 25 °C. :C and :) are predetermined constants.
Similar to estimating core temperature, we use the thermal
model in [29] to convert ambient temperature )0<1 to battery
cell temperature )24;; with different linear coefficients.

IV. PRE-DEPLOYMENT OPTIMIZATION VIA SENSOR
DEPLOYMENT

A. Sensor Placement Problem Formulation

We assume that sensor nodes can be deployed in a candidate
grid space N to cover a set of points of interest (PoIs) denoted
by O. For ease of reading, we list the important symbols used
in our formulation in Table I. Assuming at most one device
can be placed at a grid point and only one gateway exists,
the optimization problem minimizes the number of deployed
nodes subject to the following constraints:
• Probabilistic coverage constraint. Each PoI is covered

with at least a predetermined probability.
• Complete connectivity. All generated data can be success-

fully routed to the gateway.
• Energy-neutral operation. At each deployed site, the

energy consumption is less than the harvested energy.
• Reliability constraints. Using the models in Section III,

the reliability of each deployed device after a predeter-
mined time duration )8<4 is greater than a given bound.

The binary variables of the problem are G8 (Eq. (5)) and
B8 (Eq. (6)). While G8 suggests whether a device is placed at
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TABLE I: List of important notations in problem formulation.

Symbol Meaning
N Set of grid locations
O Set of point-of-interests
(2 Starting distance of uncertain detection
(A Feasible sensing radius
�A Feasible communication radius
?Cℎ Required coverage probability threshold
� Quantity of data in each sample
W The maximum possible flow amount
[ Uniform sampling frequency
�, Communication bandwidth
38 9 Euclidean distance between grid 8 and 9

Γ8 , Γ� Set of neighbor nodes of node 8 and the gateway
G8 Whether a device is placed at 8
B8 Whether a sensor is placed at 8
58 9 Average flow quantity from 8 to 9

58� Average flow quantity from 8 to the gateway
%C G , %A G Average transmission and reception power
%8 Average power consumption rate at node 8
(%8 Approval of solar panel installation at 8
%(>�,8 Power bound to meet SoH bound at 8
%")) �4 ,8 Power bound to meet electronics MTTF bound at 8
'8 Energy harvesting rate at node 8
)0<1,8 Ambient temperature at node 8
)24;;,8 Battery cell temperature at 8
)2,8 Internal core temperature at 8
)A4 5 Reference temperature of 25 °C
)8<4 Elapsed time for reliability evaluation

location 8, B8 further indicates whether the device performs
sensing actions. G8 and B8 enable the problem to distinguish
relay nodes (i.e., nodes that only route data) and sensor nodes
(i.e., nodes that carry out both sensing and transmission). The
continuous variables are 58 9 and 58� which representing the
flow quantity from node 8 to 9 and from node 8 to the gateway.

G8 =

{
1 if a device is placed at 8
0 otherwise. (5)

B8 =

{
1 if a sensor is placed at 8
0 otherwise. (6)

We show an example deployment in Figure 3. Each grid
point is a candidate site. The red triangles represent deployed
sensor nodes (G8 = 1, B8 = 1) whose sensing radius is shown
by the red circle. Both PoIs (green diamonds) are successfully
covered by the deployed sensors with level  = 1. The blue
dots are pure relay nodes (G8 = 1, B8 = 0) that only route data.
All nodes are connected to the gateway (orange star).

Now we rigorously formulate the problem as MILP:

min
∑
8∈N

G8 (7)

subject to∑
8∈N

B8 · log (1 − 2>E(8, 9)) ≤ log(1 − ?Cℎ), ∀ 9 ∈ O (8a)

B8[� +
∑
9∈Γ8

5 98 =
∑
9∈Γ8

58 9 + 58� , ∀8 ∈ N (8b)∑
8∈Γ�

58� =
∑
8∈N

B8[� (8c)

B8 ≤ G8 , ∀8 ∈ N (8d)

Fig. 3: An example deployment instance.

∑
9∈Γ8

58 9 ≤ WG8 , ∀8 ∈ N (8e)

G8 ≤ (%8 , ∀8 ∈ N (8f)

%8 ≤ min
{
'8 , %(>�,8 , %")) �4 ,8

}
,∀8 ∈ N (8g)

G8 ∈ {0, 1} , B8 ∈ {0, 1} , ∀8 ∈ N (8h)
0 ≤ 58 9 ≤ W, ∀8 ∈ N , 9 ∈ N , 8 ≠ 9 (8i)

Eq. (8a)-(8g) are deployment constraints that we will explain
next. Eq. (8h) and (8i) give the lower and upper limits for all
variables.

Probabilistic Coverage Constraint: Targeting at general
applications, we employ the state-of-the-art probabilistic cov-
erage model for wireless sensor networks [31], [32]. Suppose
that 3 (8, 9) represents the Euclidean distance between 8 ∈ N
and 9 ∈ O. The probabilistic coverage model is defined as:

2>E(8, 9) =


1 if 3 (8, 9) ≤ (2 ,
4−l ·3 (8, 9) if (2 < 3 (8, 9) ≤ (A ,
0 otherwise.

(9)

where (2 is the starting distance of uncertainty in detection,
and (A is the maximal sensing radius. We require the overall
detection probability of target 9 ∈ O to be at least a predeter-
mined threshold ?Cℎ:

? 9 = 1 −
∏
8∈N
(1 − B8 · 2>E(8, 9)) ≥ ?Cℎ . (10)

By applying the log operation on both sides and following
similar derivations as in [33], we are able to convert the
product of probabilities into sum, as shown in Eq. (8a). Since
the probabilities of 2>E(8, 9) can be computed in advance,
Eq. (8a) is a linear constraint.

Connectivity Constraint: To account for a variety of
modern wireless communication technologies, we model the
connectivity with a maximal reachable distance which can be
set according to the technology and transmission power. We
assume the feasible communication range of each device to be
�A . Then the neighbor set Γ8 of grid node 8 is defined as Γ8 ={
9 ∈ N | 38 9 < �A , 9 ≠ 8

}
, where 38 9 denotes the Euclidean

distance between grid locations 8 and 9 . Γ� represents a set
of gateways neighbors. The connectivity constraints require:
(i) flow conservation, i.e., the sum of the outgoing flow should
equal to the sum of the incoming flow and generated data (if
any) at each node (Eq. (8b)), (ii) complete connectivity, i.e.,
all data generated from end devices converge into the gateway
(Eq. (8c)). Eq. (8d) and (8e) are feasibility constraints. The
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former equation states that a sensor can only be placed at the
site where a device exists, while the latter one claims that no
flow can pass through node 8 if no device is located there.
W = [� |N | is defined as the maximum flow quantity possible
in the network.

Energy-Neutral Operation Constraint: To achieve
energy-neutral operation at each deployed spot, the average
power of the device should be less than or equal to the
harvesting rate. Energy-harvesting sensor node consumes am-
bient power (e.g. dissipated power during sleep state), sensing
power, and communication power [34]. We assume that the
system wakes up once in a sampling interval )2H2;4, performs
the sensing task, transmits the packet, and sleeps again before
the next cycle. The average power of a device at grid 8 is then:

%8 = %0 + B8�B[ +
∑
9∈Γ8

(
%C G (38 9 )

58 9

�,
+ %A G

5 98

�,

)
, (11)

where %0 is a constant that denotes the dissipation of ambient
power. �B is the energy consumed per sensing task and
[ = 1/)2H2;4 is the sampling frequency. Thus, �B[ stands
for the average power in sensing. With B8 , sensing power
is only counted when a sensor is placed at 8. The last
term in the bracket is the average transmission and reception
power models using typical parameters for BPSK [35]. The
transmission power varies polynomially with the distance:
%C G (3) = ?C> + : · 3U, where ?C>, : and U are predefined
constants. The average reception power %A G is fixed. �, is
the bandwidth limitation.

The average energy harvesting rate '8 at grid location 8 can
be determined by the average solar irradiance level _8 (W/m2)
[7]: '8 = b8�_8 , where � is the surface area of the solar
panel, b8 is the end-to-end conversion efficiency of the solar
system at node 8. _8 is available from online databases such
as NSRDB [13]. We assume uniform � among all deployed
nodes in our formulation. b8 depends linearly on ambient
temperature )0<1,8 and solar irradiance level _8 at node 8 [36]:

b8 = 0)0<1,8 + 0'Cℎ_8 + 1, (12)

where 'Cℎ is the thermal resistance of solar panel and 0, 1 are
predetermined constants. 0, 1, 'Cℎ are obtained from experi-
mental measurements. Combining the above components, we
write the energy-neutral operation constraint at 8 as %8 ≤ '8 .

Reliability Constraints: We now explain how to convert the
nonlinear reliability models in Section III to linear constraints.
All reliability models rely on the distribution of ambient
temperature, )0<1 , at the specific location. The expectation
of reliability at a specific location 8 can be calculated as in
Eq. (13), where ?)0<1,8 is the probability associated with the
temperature distribution at location 8.

"))�B?,8 =

∫ ∞

−∞
"))�B? ()0<1,8)?)0<1,8 3)0<1,8 (13a)

(>�8 =

∫ ∞

−∞
(>� ()24;;,8 ()0<1,8 , %8))?)0<1,8 3)0<1,8 (13b)

"))�4,8 =

∫ ∞

−∞
"))� ()2,8 ()0<1,8 , %8))?)0<1,8 3)0<1,8 (13c)

The solar-panel reliability model depends only on ambient
temperature (Eq. (1)) thus "))�B?,8 is fully determined given
a temperature distribution. If high ambient temperature puts
the MTTF ratio of the solar panel below a reference value
"))�B?,A4 5 , we label the current location as unsuitable for
deploying solar panels. We introduce the notation (%8 to
indicate whether the solar panel can be installed at a particular
location:

(%8 =

[
"))�B?,8 ≥ "))�B?,A4 5

]
. (14)

Here, the notation [�>=3] gives 1, when the inner condition
Cond is met; otherwise 0. With (%8 , we specify the solar panel
reliability constraint at each site 8 as Eq. (8f).

For electronics and battery reliability, we require (>�8 and
"))�4,8 to satisfy reference thresholds:

(>�8 ≥ (>�A4 5 (15a)

"))�4,8 ≥ "))�4,A4 5 (15b)

Note that after the integral in Eq. (13), the expectations of SoH
and MTTF only rely on the average power of the device at
location 8. Given the distribution of ambient temperature, (>�8
and "))�4,8 monotonously decrease with %8 . Therefore we
can determine the corresponding upper bounds on the average
power to meet the reliability constraints. We employ the binary
search algorithm to efficiently estimate the power upper bound
caused by battery SoH and electronics MTTF constraints (i.e.,
%(>�,8 and %")) �4 ,8) within a precision of Y. Initiating the
two ends of search space to 0 and %<0G , it takes at most
;>62 (d %<0GY e) iterations to locate the desired power bound.

Since both the energy-neutral operation and reliability con-
straints are expressed as power upper bounds, they can be
combined into one single linear inequality as in Eq. (8g).

Complexity Analysis: The number of decision variables
in the formulated MILP is 2|N | + |N |2, where 2|N | of them
are binary and the rest |N |2 variables are continuous. After
simplification, we arrive at |N | + 1 equality constraints and
3|N | + |O| inequality constraints. We implement and solve
the proposed problem in CPLEX 12.10 [37]. However, the
proposed problem cannot be solved in polynomial time since
it is NP-complete.

First, the problem belongs to the class of NP. For any given
instance, we can verify whether it satisfies Eq. (8a)-(8g) in
polynomial time. Then, we consider a relaxed version of (P)
by setting � = 0, %0 = 0, �B = 0, %C G = %A G = 0. Namely, we
relax the flow, power and reliability constraints as arbitrary
values of 58 9 < W can satisfy the above constraints. With only
the coverage constraints, the relaxed problem is equivalent to
the minimum set cover problem whose goal is to find a cover
for a given set of targets O with the minimum number of grid
points from N . Hence, the proposed problem is reducible to a
well-known NP-complete problem of minimum set cover [38].
It is also clear that arbitrary instances of set covering can be
encoded as an instance of the proposed problem. Therefore
the proposed problem is NP-complete.

B. Proposed Heuristic: R-TSH
Given that our optimization problem is NP-complete, we

design a heuristic, Reliability-driven Two-Stage Heuristic (R-
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TSH) for large-scale problems. We add reliability constraints
to the Two-Stage Heuristic (TSH) proposed in [7]. In contrast
to TSH [7] which attempts to minimize the deployment cost,
R-TSH disables a node 8 which violates solar panel MTTF
constraints (Eq. (8f)), and makes selections based on the
equivalent power bound %13,8 = min

{
'8 , %(>�,8 , %")) �4 ,8

}
to address the electronics MTTF and the battery SoH require-
ments. In this way, R-TSH meets the reliability constraints
and ensures energy-neutral operation. The complete flow of
R-TSH is shown in Algorithm 1.

Algorithm 1 R-TSH

Input: N ,O, 2,  , (%, %13,8
Output: X,S, F

1: S ← ∅ ⊲ selected sensor node set
2: U ← {1, 2, ..., |$ |} ⊲ PoIs not fully covered
3: @8 ←  , ∀8 ∈ N ⊲ unsatisfied coverage requirements
4: N ← {8 | (%8 = 1, 8 ∈ N} ⊲ filter out unapproved sites
5: while U ≠ ∅ do
6: S8 ←

∑
9∈* 2>E(8, 9), ∀8 ∈ N ⊲ PoIs covered by 8

7: 8∗ ← arg max
{
|S8 ∩U| · %13,8 | 8 ∈ N − S

}
8: if |S8∗ ∩U| = ∅ then
9: break ⊲ no new coverage

10: end if
11: for all : ∈ |S8∗ ∩U| do
12: @: ← @: − 1
13: if @: ≤ 0 then
14: U ←U − {:}
15: end if
16: end for
17: S ← S ∪ {8∗} ⊲ update sensor node set
18: end while
19: if U ≠ ∅ then
20: return Null ⊲ infeasible in full coverage
21: end if
22: V ← {N , 2} , E ← {(8, 9) | 8, 9 ∈ V, 8 ≠ 9 , 9 ∈ Γ8}
23: W(8, 9) ← l1 [8 ∉ S] + l2

(%CG (38 9 )+%AG )[�/�,
%13,8−(%0+�B[ [8∈S]) ,∀(8, 9) ∈ E

24: GP ← CreateGraph(V, E,W)
25: F ← ShortestPathTree(GP,S, 2)
26: X ← {8 | 8 ∈ F }
27: return X,S, F

R-TSH first filters out the sites that violate solar-panel
reliability constraints (line 4). Next it selects the nodes that
satisfy SoH and electronics MTTF constraints in two stages.
The first sensor selection stage (line 4 - 20) selects the sensor
locations with the maximum benefit:

�4=4 5 8C8 = |S8 ∩U| · %13,8 (16)

where S8 denotes the set of PoIs covered by location 8 and
U represents the PoIs that have not been fully covered. The
benefit function favors locations that cover more PoIs while
meeting power bounds. The selecting loop exits once the
probabilistic coverage is attained, or no new coverage can be
made. The latter case indicates that the problem is infeasible.

The second stage focuses on the communication-path se-
lection. Here we construct a directed graph GP by including

all connectable edges and assign the following weight to edge
(8, 9) with tuned parameters l1, l2:

W(8, 9) ← l1 [8 ∉ S] + l2
(%C G (38 9 ) + %A G)[�/�,
%13,8 − (%0 + �B[ [8 ∈ S])

(17)

The first term appends additional cost to the edge if 8 is not
added to the sensors set S in stage 1. The second term com-
putes the ratio of increased transmission power and remaining
power budget. Intuitively, the communication paths costing
less transmission power and less critical in energy bounds
as well as reliability constraints are given higher priorities.
Dijkstra’s algorithm is used to concurrently find the shortest
paths F from selected sensors S to the gateway 2 in GP (line
25). All selected sensor nodes and relay nodes are returned in
X. The routing graph is captured by F .

Complexity Analysis: The initialization from line 1 to 3
is $ ( |O| + |N |). The while-loop in line 4 takes at most  |O|
iterations. If the matrix of 2>E(8, 9) is calculated and stored in
advance, both line 5 and 6 cost $ ( |N |) time. The for loop in
line 10 consumes $ ( |$ |) time. Hence the time complexity of
the first stage (line 4 - 10) is $ ( |N ||O|). In the second stage
(line 21 - 25), the constructed graph is sparse. Suppose that the
feasible communication radius is �A and the distance between
the two adjacent sites is 3. Then one site can connect to at
most (2

⌊
�A
3

⌋
+ 1)2 other nodes including the sink. We denote

this constant as �. The number of edges in the graph should
satisfy |E | < � |N |. Constructing a graph with |N | vertices and
|E | edges takes $ ( |N | + |E|) = $ ( |N |). Applying Dijkstra’s
algorithm to find the shortest path takes $ ( |E |+ |N | log |N |) =
$ ( |N | log |N |) time. Therefore, the overall time complexity of
R-TSH ends up with $ ( |N ||O| + |N | log |N |).

V. POST-DEPLOYMENT OPTIMIZATION VIA ROUTING

While R-TSH jointly optimizes sensor deployment and
routing paths considering temperature and solar irradiance
distributions, we recognize that practical conditions can af-
fect the performance after deployment. The deployed sensors
might experience unexpected heat waves resulting in more
severe reliability degradation than R-TSH’s estimates. Lower
than expected solar energy availability may cause service
outages. Unreliable communication and random node failures
are typical of sensor network deployments. To combat these
post-deployment changes (as shown in Figure 4), we propose
an adaptive routing algorithm based on Ad-hoc On-demand
Distance Vector (AODV) [39] as the second component of
our reliability-driven framework. The goal is to balance relia-
bility degradation due to varying conditions and alleviate the
negative impacts of potential failures after deployment.

Fig. 4: Post-deployment changes that motivate adaptive routing.
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A. Adaptive Routing Algorithm: AODV-Rel

AODV routing protocol is a decentralized and reactive pro-
tocol for ad-hoc networks, which has been shown to consume
less energy than its counterparts [40]. AODV detects and
adapts to changes in the network in a timely manner by ex-
changing Route Requests (RREQ) and Route Replys (RREP)
between nodes. Our adaptive routing algorithm, AODV-Rel is
based on AODV to leverage the adaptive mechanism of AODV
to address post-deployment changes during runtime.

With AODV, each node maintains a routing table obtained
from request-response cycles among the network. The routing
table records the next hop with its latest routing cost. All
packets are forwarded to the next hop with minimal routing
cost. In the original AODV, the routing cost is simply the
number of hops to transmit from one node to the other. AODV-
Rel instead relies on reliability-aware cost metric to balance
reliability degradation. Suppose that the routing cost from
node D to the sink (node 0) is &D . The routing table at node
D documents the aggregated routing cost collected from its
neighbors and selects the next destination as the node with
the minimal routing cost:

arg min
E∈ΓD

&E + exp(−"D,E,C ), (18)

where exp(−"D,E,C ) is a reliability-aware cost metric between
nodes D and E that distinguishes our design from the original
AODV. "D,E,C denotes the power margin to choose a hop D

to E at time C.
The power margin metric should accurately capture the

reliability degradation due to environmental stresses and link
failures. We propose to compute the power margin as follows:

"D,E,C = %13,D,C − %2DA ,D,C − (%C G (3DE ) + %A G)[�/�,. (19)

The power bound %13,D,C = min
{
'D,C , %(>�,D,C , %")) �4 ,D,C

}
is similar as we used in R-TSH, which reflects the maximal
allowed power to meet (i) energy-harvesting, (ii) SoH, and
(iii) electronics MTTF constraints under real-time environmen-
tal conditions. Notice, that different from the pre-deployment
optimization, the power bound metric here records the real-
time status rather than long-term expectation. The second term
%2DA ,D,C is the current power measurement under real-time link
conditions. We assume that retransmissions are initiated until
the packets are successfully received or a maximum number
of retransmissions is reached. Poor link quality causes more
retransmissions and increases the average power. The third
term in Eq. (19) denotes the increased power if link D to E is
selected, which also appears in Eq. (17).

The proposed reliability-aware power margin metric in-
cludes all potential reliability degradation sources as depicted
in Figure 4. Environmental changes of temperature and solar
irradiance push the real-time power bound %13,D,C , while poor
link qualities increase the current power %2DA ,D,C , both closing
the power margin "D,E,C . In addition, the power cost of
transmitting from D to E due to distance is also integrated in
"D,E,C . We use the exponential form of negative power margin
to favor large margins and impose an exponential penalty on
negative margins.

B. Implementation

We implement AODV-Rel in RelIoT [14], an open-source
reliability simulation framework based on ns-3 [16]. While
ns-3 provides discrete event-based simulations for networking,
RelIoT further provides power, temperature, and reliability
modules for analysis, as shown in Figure 5. In contrast to
the model-based MATLAB simulations, RelIoT offers more
dynamism as it simulates the protocol-based packet delivery
and reliability degradation under real-time temperature and
solar radiation traces. Specifically, the simulator has a state-
based module that alternates between communication states,
TX, RX, IDLE, SLEEP with varying durations, which re-
sults in different amounts of power and energy consumption
throughout the simulation.

In RelIoT, we configure the power and temperature mod-
ules according to the models described in Section III and
Section IV. We also utilize the energy harvesting and battery
modules of ns-3 to monitor battery capacities over the simula-
tion horizon and validate energy-neutral operation. To account
for environmental conditions, we download the hourly ambient
temperature and solar radiation traces from NSRDB [13], and
input them to the temperature module and the energy harvest-
ing module, respectively. Finally, we introduce two functions
to RelIoT for computing electronics MTTF and SoH using the
core temperature traces obtained from the temperature module.
The simulator estimates electronics reliability using the Time-
Dependent Dielectric Breakdown (TDDB) model [9], [28].
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Fig. 5: Reliability framework in RelIoT.

With the above configuration, we are able to estimate the
time-wise reliability per deployed node. AODV-Rel is then
implemented based on the AODV module in ns-3, using the
routing cost defined in Eq. (18).

VI. EVALUATION

In this section, we first present the simulation setup (Sec-
tion VI-A). The numerical results in MATLAB on sensor
placement are listed in Section VI-B. Then Section VI-C
provides the ns-3 based RelIoT [14], [15] simulation results
including both sensor placement and adaptive routing. Finally,
we explicitly discuss the impact of parameters on reliability
trade-offs in Section VI-D.

A. Simulation Setup

We solve the MILP with CPLEX 12.10 [37] and then com-
pare to our heuristic in MATLAB R2020b. The source code
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for our algorithms is available online2. Simulation experiments
are performed on a Linux desktop with Intel Core i7-8700
CPU at 3.2 GHz and 16 GB RAM. We use a dataset covering
100 km × 100 km region in Southern California, downloaded
from NSRDB [13]. The dataset contains half-hourly solar
irradiance and ambient temperature measurements across mul-
tiple years. We project the spatial temperature distribution to
the candidate grid space over a variety of field sizes. The
positions of PoIs and the gateway are randomly initialized.
We set the reliability bounds "))�B?,A4 5 = 1.33, (>�A4 5 =
0.9, "))�4,A4 5 = 0.9 and elapsed time )8<4 = 5 years. Table
II reports the detailed parameter settings.

The communication-related parameters used in RelIoT are
summarized in Table III. We set multicast routing between
nodes with Constant Bit Rate (CBR) traffic, conforming to
the flow rates and routes described by the deployment.

TABLE II: Parameter settings in evaluation.

Param. Value Param. Value Param. Value
(2 100 m (A 120 m �A 200
� 100 B �, 2000 B/s %0 0.01 W
�B 0.04 J %C> 0.22 W V 10−7

U 3.5 %AG 0.1 W � 0.01 m2

b 0.05 [ 0.1 l1, l2 1, 1.3

TABLE III: ns-3 simulation parameters

Parameter Value
Routing Protocol Static Routing

MAC Layer IEEE 802.11b
Traffic Type CBR UDP
Data Rate 1 kBps per sensor

Packet Size 1024 bytes
Bandwidth 1Mbps
Loss Model Friis Propagation Loss Model

The performance of the following methods are evaluated:
• OPT: The optimal solution to the proposed problem.
• OPTnoRel: The optimal solution to the proposed problem

without the reliability constraints.
• R-TSH: Our proposed heuristic.
We select two baselines from [7] to compare with: (1) TSH,

the original two-stage heuristic, and (2) SRIGH, the sensing-
and routing- integrated greedy heuristic in [7]. SRIGH greedily
selects a sensing node and its communication route within each
iteration, thus fails to balance routing from a global view. Both
TSH and SRIGH are devised to cover PoIs with minimum
deployment cost while ensuring energy-neutral operation.

B. Numerical Results on Sensor Placement

1) Small-Scale Problem Simulations: We perform small-
scale problem simulations on a grid space of 500 m × 500 m
and set the desired coverage probability to ?Cℎ = 0.6.

Various number of PoIs: First, we set the number of
candidate grid sites to 100 and choose the number of PoIs
from 5 to 25. Since the positions of PoIs are initialized
randomly, we run all methods with 40 different initializations

2The source code is available at https://github.com/Orienfish/EH-deploy.

(a) Numerical results with various number of PoIs to cover.
Left: the minimum deployed nodes. Right: reliability violations.

(b) Numerical results with various number of candidate sites.
Left: the minimum deployed nodes. Right: reliability violations.

Fig. 6: Numerical results with 90% confidence interval on a
small-scale problem.

and calculate the average result with 90% confidence inter-
val. Figure 6a displays the number of deployed nodes and
reliability violations (i.e., the portion of deployed nodes that
violate at least one of the reliability bounds) of each method in
our simulation. OPT deploys 49% more nodes than OPTnoRel
to satisfy the reliability constraints. However, if optimizing
without the reliability, OPTnoRel will have more than 53% of
nodes violating the reliability bounds. Our heuristic R-TSH
deploys around 28% more nodes than OPT but it is more
than 2000x faster while keeping reliability violation below
4%. Note, that R-TSH adjusts trade-off between the number
of deployed nodes and reliability violations by l1 and l2,
which is discussed in Section VI-D. R-TSH picks 13% and
63% more nodes than TSH and SRIGH but TSH and SRIGH
have 14% and 24% violations on average respectively.

Various number of candidate sites: In the second ex-
periment,set PoIs to 20 and select the number of candidate
grid sites from {100, 110, 120, 130, 140}. Figure 6b presents
the average number of nodes and reliability violations after
40 random trials. Similar improvements can be observed in all
three sets of comparisons. Additionally, comparing Figure 6a
and Figure 6b, we see that the number of deployed nodes is
driven sublinearly by PoIs. Creating finer-grained candidate
sites can improve the quality of solutions by satisfying the
same constraints with fewer nodes at the cost of longer
execution time.

2) Large-Scale Problem Simulation: We next evaluate a
grid space of 5 km × 5 km to compare the performance of
R-TSH and two heuristic baselines in a larger setting. The
coverage level is ?Cℎ = 0.9. We report the performances of R-
TSH, TSH, and SRIGH, with varying the number of PoIs and
grid locations in the field. The average results of 40 randomly

https://github.com/Orienfish/EH-deploy
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(a) The minimum deployed nodes and the percentage of reliability
violations on a large field. Left: when varying number of PoIs. Right:
when varying number of candidate sites.

(b) Execution time results. Left: the execution time when varying
number of PoIs. Right: the execution time when varying number of
candidate sites.

Fig. 7: Numerical results on a large-scale problem.

initialized cases are shown in Figure 7a and Figure 7b.
Various number of PoIs: We place 10K candidate sites

in the field while varying the number of PoIs from 50 to
150. Figure 7a (left) scatters the number of deployed nodes
and reliability violations of all heuristics while altering the
number of PoIs to be covered. It can be seen that R-TSH
places 6% and 16% more nodes on average than TSH and
SRIGH respectively, but both baselines result in 17% or more
reliability violations.

Various number of candidate locations: We next set the
number of PoIs to 100 and change the candidate grid size.
Figure 7a (right) shows the results as the number of candidate
locations changes from 6K to 14K. Reliability violations
of TSH and SRIGH fluctuate from 15% to 55% when the
size of the grid space changes. At the same time, R-TSH
consistently keeps the violation rates below 3% while having
10% and 16% more nodes than TSH and SRIGH respectively.
Interestingly, R-TSH returns much better solutions than TSH
on both metrics, the number of deployed nodes and reliability,
when the number of candidate sites is more than 12K.

Execution Time: Figure 7b displays the execution time
of all heuristics in the above two experiments. R-TSH and
TSH consume similar time as they adopt the same mechanism,
which is different from SRIGH. The runtime of R-TSH and
TSH increases as more PoIs or candidate sites are considered,
which agrees with our complexity analysis in Section IV-B.
SRIGH runs much longer than R-TSH and TSH, especially
with more candidate sites. This can be attributed to the fact
that SRIGH calls the Dijkstra’s algorithm multiple times to
update routing path along with the node selection, while the
two-stage mechanisms only trigger it once.

TABLE IV: Comparison of the deployments generated by
various methods in RelIoT.

Method Number of Nodes Min SoH Min MTTF4
OPTnoRel 15 81.2% 79.1%
SRIGH 19 87.1% 88.2%

TSH 20 89.6% 93.9%
OPT 22 90.1% 94.7%

R-TSH 25 90.1% 95.0%

C. RelIoT (ns-3) Results

1) Sensor Placement in Pre-Deployment Stage: For more
realistic validation, we evaluate the same networks with the
same setup as shown in the previous section by using state-
of-the-art reliability, power, and performance simulator RelIoT.
We input the temperature and solar irradiance traces from
NSRDB into the simulator, bringing more realistic dynamism
to the simulation.

Similar as the small-scale deployment, we randomly initial-
ize PoIs over a grid of 500 m × 500 m, generate deployment
plans with all methods, and simulate the established networks.
The number of nodes deployed, the minimum SoH, and the
minimum electronics MTTF of the nodes for the 5-year simu-
lation time and each deployment method are given in Table IV.
SoH and MTTF values are represented as percentages with
respect to their standard values at temperature )A4 5 = 25°C.
The minimum SoH and MTTF usually occur on the same
node which acts as a root in the routing topology. This node
degrades faster as it does a lot of the routing of traffic. We
refer to it as the bottleneck node.

As shown in Table IV, OPTnoRel deploys fewer nodes than
the other methods, but causes unbalanced reliability in the net-
work. The bottleneck node in OPTnoRel violates the SoH and
electronics MTTF bounds, i.e., (>�A4 5 = 0.9, "))�4,A4 5 =
0.9. Only reliability-driven methods, OPT and R-TSH, are
able to meet the reliability bounds. R-TSH deploys 13% more
nodes than OPT. Compared with the baseline heuristics, R-
TSH deploys approximately 25% more nodes.

TDDB reliability degradation: To examine the reliability
degradation mechanism in more details, we plot the reliability
of electronics computed internally by RelIoT for the bottleneck
node in each deployment in Figure 8a. RelIoT leverages the
TDDB model [9], [28], which defines reliability as the prob-
ability of not having failures before a given time C and takes
the values in the range [0, 1]. Figure 8a shows that initially
the reliability for all methods is similar but the difference is
exacerbated over time due to the exponential dependency. By
the end of the 5-year duration, the bottleneck node in OPT has
12% higher reliability than the bottleneck node in OPTnoRel.
Furthermore, R-TSH achieves the best reliability among all
methods, improving reliability by 11% compared to SRIGH
at bottleneck nodes after 5 years.

Battery State of Charge (SoC): We also observe the time-
wise changes in battery SoC using RelIoT to assess how
solar panels affect network operation. In Figure 8b, we show
the battery SoC in percentages of the bottleneck node for
each method. For all methods except OPTnoRel, nodes can
recover the depleted battery charge very quickly using energy
harvesting. For the bottleneck node in OPTnoRel deployment,
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(a) Time-wise TDDB reliability on the bottleneck node of each
deployment in 5 years.
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(b) Time-wise battery SoC on the bottleneck node of each deploy-
ment in 1 year.

(c) Season-wise distribution of battery SoC on all nodes of each
deployment in 1 year.

Fig. 8: Time-wise simulation results in RelIoT.

energy-neutral operation is still satisfied, although the battery
SoC is recovered over a much longer time frame. During
cloudy times, there is not much solar energy generation so
the battery capacity decreases drastically, but in summer it
balances out and goes back to full charge for energy neutral
operation.

Figure 8c visualizes the distribution of battery SoC among
all nodes for each season. Most nodes maintain a high bat-
tery SoC of more than 98%, while OPTnoRel has dramatic
variations between minimum and maximum SoC, primarily
due to bottleneck nodes whose SoC drops close to zero.
Due to season-wise variations in available solar radiation,
such bottleneck nodes have higher SoC during summer, but
are prone to energy drain during winter. All deployments
generated by heuristics preserve high and balanced SoC on all
nodes. In summary, the simulation results in RelIoT show that
OPTnoRel sacrifices reliability, while reliability-driven methods
better balance reliability with routing workloads.

2) Adaptive Routing in Post-Deployment Stage: While R-
TSH is highly optimized for the historical temperature/solar
data in long-term deployment, it is not able to react to real-time
variations after the deployment. Our adaptive routing algo-
rithm is designed to address post-deployment adjustments. In
addition to the normal case that exactly follows the estimated
temperature distributions and has no packet loss, we simulate

two different scenarios that are representative of potential
variations after the deployment:

(1) Temperature deviation: To simulate the unexpected
temperature and solar irradiance deviation, we download
the NSRDB data of year 2010 for sensor placement
optimization, and input the traces of year 2020 into
RelIoT to simulate reliability degradation. For reference,
the annual average temperature in the region is increased
by 2.4°C between 2010 and 2020.

(2) Wireless interference: We assume that there is wireless
interference from nearby communicating devices that
results in packet losses. We manually place interfering
devices near each node in the network. These devices
randomly generate interference at irregular intervals. IoT
devices operate on unlicensed wireless bands and are
therefore susceptible to interference from unrecognized
devices using the same band. The interference is usually
random and unknown in advance, which cannot be taken
into account in optimization.

For each scenario, we use the same placement generated by
R-TSH and apply the fixed routing, the original AODV and
our AODV-Rel. The fixed routing paths are generated by R-
TSH assuming that there is no post-deployment variation.
The original AODV purely optimizes for the number of hops
without considering the reliability.

We simulate a 23-node deployment generated by R-TSH,
which is optimal for the assumed ambient temperature dis-
tribution and no packet loss. The results for the minimal
reliability and operational lifetime of all nodes are presented in
Table V. We evaluate the operational lifetime which refers to
the time when reliability degrades below 0.5, that is, the node
has 50% probability to fail before that moment. It can be seen
that fixed R-TSH routing is the best method under “normal”
conditions. This is expected as the R-TSH solution, including
both deployment and routing, is optimized for undeviating
post-deployment environments. However, adaptive routing im-
proves the R-TSH solution when there is temperature devia-
tion or wireless interference. By using adaptive routing, the
bottleneck node (i.e., the node presents minimal reliability)
can stay above the specified reliability level for 1.5 and 2.8
months longer at deviated ambient temperature and wireless
interference respectively, compared to fixed routing. There is
a trade-off for employing either approach: if the environment
estimations are perfect and communication is reliable, then
fixed routing of R-TSH is optimal. Otherwise, adaptive routing
is preferred as it can adapt to changing conditions. The default
AODV performs the worst because it always routes through
the same nodes for the least number of hops. Therefore, it is
not adaptive to temperature or interference variations in the
network.

The discrepancy in the results of the compared approaches
can be explained by the amount of data routed through the
bottleneck node as shown in Table VI. We should note that
the bottleneck node is not the same for all approaches. The
fixed routing and the default AODV approaches have the same
throughput for all scenarios, so we present them with a single
entry on the table. AODV routing decisions are purely based
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TABLE V: Comparison of various routing algorithms on the
minimal SoH and electronics MTTF (in percentage to their
standard values under temperature )A4 5 = 25°C) and the
minimal operational lifetime in months.

Method Min SoH Min MTTF4 Min Lifetime

Normal Fixed 90.4% 95.2% 63.8
AODV 88.9% 93.0% 61.2

AODV-Rel 89.6% 94.6% 63.2
Temp.
variation

Fixed 87.5% 90.6% 59.0
AODV 86.6% 88.7% 56.9

AODV-Rel 88.7% 92.3% 60.5
Wireless
interfere.

Fixed 86.8% 88.8% 57.2
AODV 86.0% 88.2% 56.3

AODV-Rel 88.1% 91.5% 60.0

TABLE VI: Throughput in kBps of the bottleneck node under
various scenarios.

Fixed AODV AODV-Rel
Normal Temp. Interfere.

Throughput 15.00 20.00 16.16 12.24 11.77

on the number of hops, hence there is no change in the
amount of data forwarded through the bottleneck node. The
throughput, and hence the communication load is lowered by
adaptive routing in temperature deviation and wireless inter-
ference scenarios. Packet losses cause retransmissions which
increase the average power consumption. Adaptive routing
avoids sending packets through the bottleneck node because its
power margin is low as a result of retransmissions and higher
temperature. Therefore, adaptive routing in the temperature
variation scenario and in the packet loss scenario have lower
throughput than the default scenario (AODV-Rel), which are
12.24 kBps and 11.77 kBps, respectively.
D. Discussion

In this section, we provide more insights by discussing the
impact of several key issues.

1) Impact of Reliability Bounds: As explained in Sec-
tion III, our framework includes reliability models for three
hardware components: solar panels, electronics and recharge-
able batteries. Every deployed node is designed to meet the
reliability bounds. Depending on the temperature distribution
and reliability bounds, one of the components’ reliability plays
a dominant role among the three. We experiment with the
reliability bounds to evaluate the impact of each model using
real-world dataset from NSRDB [13].

We convert the solar panel reliability model to a binary
indicator showing the reliability of solar panel installation.
If high temperature accelerates failures on a solar panel so
that its MTTF drops below a predetermined bound, i.e.,
"))�B? < "))�B?,A4 5 , we “disable” the node from can-
didate grid which increases sparsity. Figure 9a depicts the
sparsity level of candidate grid when varying "))�B?,A4 5 .
Recall that "))�B? is expressed as a ratio to its standard
value under 25 °C. Therefore, Figure 9a indicates that all
candidate sites ensure the local "))�B? is longer than 1.3x
of the standard value, under the temperature distribution from
NSRDB. In practice, the solar panel model usually provides
the weakest reliability bound compared to the rest.

Unlike the solar panel model, both electronics and battery
reliability models are calculated from devices’ temperature

(a) The sparsity level of can-
didate grids when varying
MTTF bounds for solar pan-
els.

(b) The corresponding
power bound from battery
SoH and electronics MTTF
model.

Fig. 9: Impact of reliability bounds on each model.

(a) Temperature sensitivity
analysis on R-TSH.

(b) Weight parameter sensitiv-
ity analysis on R-TSH.

Fig. 10: Sensitivity analysis results.

which depends on power consumption and ambient tempera-
ture. Suppose that the ambient temperature is 35 °C, which
is common in the summer. Figure 9b plots the equivalent
power bound to satisfy various SoH and electronics MTTF
requirements (i.e., (>�A4 5 and "))�4,A4 5 ) as in Eq. (15).
The electronics MTTF bound offers the harshest reliability
requirement when (>�A4 5 and "))�4,A4 5 are greater than
0.64, while battery SoH dominates the deployment otherwise.

2) Temperature Sensitivity Analysis: We perform tempera-
ture sensitivity test to observe the impact of increased temper-
ature on deployment. Using the same setting as in the large-
scale simulation, we add up to 6 °C to all sites and observe the
number of nodes and reliability violations returned by R-TSH.
We set 10K candidate sites and 100 PoIs randomly distributed
over the field. We present the average values after 20 trials
in Figure 10a. With a temperature increase less than 3 °C, R-
TSH keeps reliability constant while more nodes are placed.
Once the temperature increase is greater than 3 °C, deploying
additional nodes cannot hold back reliability violations. This
analysis is based on the weight parameters of R-TSH, which
is discussed in the following paragraph.

3) Weight Parameter Sensitivity Analysis: The weight pa-
rameters F1, F2 in R-TSH adjust the trade-off between de-
ployment cost and reliability. To study the impact of weight
parameters, we use the same setting as the temperature sen-
sitivity test and vary F2/F1 in R-TSH between 0.9 and 2.1.
Figure 10b shows the average deployed nodes and reliability
violations after 20 trials. If F2/F1 is small, the first term in
Eq. (17) gains more weight, and thus the deployment cost
becomes more critical.
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VII. CONCLUSION

In this paper, we propose a complete framework for
reliability-aware deployment and routing in energy-harvesting
IoT networks, including pre-deployment sensor placement and
post-deployment adaptive routing. For sensor placement, we
formulate a MILP which minimizes the number of nodes
while ensuring reliability, then propose a polynomial heuristic
named R-TSH to solve large problems efficiently. For adaptive
routing, we design a new reliability-aware routing algorithm
based on AODV. Comprehensive simulations using real-world
solar irradiance and ambient temperature datasets show R-
TSH avoids 15 - 55% of reliability violations with a com-
parable number of nodes and execution time compared with
baselines, while the adaptive routing algorithm further extends
the minimal operational lifetime by 1.5 and 2.8 months under
temperature deviation and wireless interference.
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