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Our code is available at: https://github.com/QOrienfish/ EVOLVE

Introduction Problem Definition: Unsupervised Continual Learning (UCL)

» While great progress has been made in continual learning, it is still challenging to deploy the > Online unsupervised continual learning without prior knowledge
existing algorithms in the wild to learn over time » Non-iid and single-pass data streams

In a real-worl lication
a real-world applicatio » No task or class labels

» The barrier primarily stems from two factors: » No prior knowledge, e.g., task/class shift boundaries

» The unpredictable .st.reaming ir.1put » We consider three different types of class-incremental streams inspired from real-world
» The lack of supervision and prior knowledge applications
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» Most existing works in unsupervised continual learning rely on various prior knowledge to /Train | \
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» We aim at closing the gap towards real-world continual learning (Seq-imb) 0! Z g )
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An Empirical Study of Existing Self-Supervised Learning (SSL) Baselines evaluation
» Recent studies have indicated that combining SSL with memory replay holds great promise for continual
representation learning in the wild [1] Table 1. Overview of state-of-the-art SSL methods and losses. CIFAR-10 iid CIFAR-10 Seq-imb Stream-51 iid Stream-51 Seq-imb
» \We conduct empirical study of existing SSL methods with memory  Methods Loss Loss Function L1 30'5“ 0.251 -
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» Datasets: CIFA.I.? 10 (|mag.e), Stream-51 (video) [2]; L e s - . 0.15 R
» Data streams: iid vs. Seqg-imb gaylovv[ . Cross-Correlation wzi(licuu)gj = 10 0.10 -
- - . e wins [ | u 2ovztu Cuv 0 8 10 0 2 4 6 8 0 3 10 0 5 10
» Our results show that SSL.basellngs experience a §|gn|f|cant e L I vs(afl, 2P )+ Training Steps (10%) Training Steps (10%) Training Steps (10%) Training Steps (10%)
accuracy drop when applied on video datasets (with temporal SONICANNN. )OI T TR T Y )
correlation) with Seqg-imb data streams, thus impeding their practical utility for real-world applications
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» We propose EVOLVE, a hybrid UCL framework with (1) SSL training on the local ’ weseeeeed ] transmission
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Expert-guided learning helps adapt in natural and unpredictable environments The hybrid scheme avoids the high computational costs induced by running experts on clients
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Experimental Setup Results
» Datasets: CIFAR-10, TinylmageNet, CORe50 [3], Stream-51[2] » Comparison with existing UCL baselines: EVOLVE outperforms the top baseline using the same SSL by 3.6-
> UCL baselines: 20.0% in KNN accuracy and 6.1- 53.7% in top-1 linear evaluation accuracy across diverse data streams.
» Synaptic Intelligence (SI) [ICML17] . Thefinal kNN accuracy and linear evaluation accuracy on Stream-51
> Progressive Neural Network (PNN) [arXiv’1 6] Method kNN Accuracy(T) Linear Evaluation Accuracy(T)
» Dark Experience Replay (DER) INeurlPS'20] SimCLR BYOL SimSiam BarlowTwins VICReg | SimCLR BYOL SimSiam  BarlowTwins VICReg
, SSL 14.0+0.4 17.110.1 13.1+1.0 18.110.4 14.840.3 33.1+1.5 27.74+2.6 11.943.5 51.4+1.1 40.81+0.2
> CaSSLe [CVPR 22] _ | SI 12.940.5 17.0+1.0 12.340.6 12.21+0.8 11.104 | 21.3+19 27.0+8.3 13.2+5.9 26.21+0.2 23.5+2.0
> LIfeIOng UnsuperVIsed MIXUp (LUMP) [ICLR 22] PNN 12.0+0.2 17.1+1.1 12.51+0.5 12.7+1.2 11.610.8 13.54+0.6 29.940.1 0.81+0.9 26.91+4.6 25.410.1
» Experts: pretrained ResNet-50, Swin Transformer DER 13.64+0.6  16.0+0.4 14.44+1.3 13.041.2 10.74+0.4 | 31.5+1.5 37.542.4 28.0+5.0 28.940.1 24.0+1.7
5 Metrics: kNN I luati CaSSLe 147409 26.5+1.6 21.9140.8 16.71+0.3 12.61+2.0 7.5+3.2 27.34+5.0 20.616.1 10.0+1.2 38.51+2.4
Erics. accuracy, linear evaluallon accuracy LUMP | 205407 145405 12.7+0.1 13.9405  207+13 | 48240.1 272408  84+0.1 169434  55.1+1.5
EVOLVE | 30.1+1.6 31.6+1.3 31.5+1.7 30.1+1.7 24.8+0.4 | 82.2+0.9 84.4+1.0 81.7+1.0 75.74+2.4 61.2+1.7
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