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Continual Learning see

e Continual Learning

e To continually learn over time by acquiring new
knowledge as well as consolidating past experiences

e Key assumption: continuously changing environments
e Key challenge: catastrophic forgetting

» While great progress has been made in continual
learning, there is still a gap between existing continual
learning algorithms and real-world deployments, due to

« Unpredictable streaming input

» Lack of supervision and prior knowledge

We consider the
unsupervised continual
learning (UCL) problem
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Related Work see

e Most existing works in UCL rely on various prior knowledge to produce good results
e Cons: these prior knowledge may not be available in real-world applications
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e Self-supervised learning methods with a replay buffer can alleviate catastrophic
forgetting on non-iid data streams [ECCV’22]

e Cons: itis unclear how to effectively learn new patterns in an unpredictable world

e In this work, EVOLVE aims at closing the gap between continual learning algorithms and
real-world applications by eliminating the prior assumptions.
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An Empirical Study of Existing Self-Supervised Learning (SSL) Baselines S€€

e To study whether SSL w/ replay buffer is sufficiently

practical, we conduct empirical study

e Dataset: CIFAR-10 (image), Stream-51 (video) [CVPRW’20]

e Data streams: iid vs. temporally correlated

Table 1. Overview of state-of-the-art SSL methods and losses.
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Our Method: EVOLVE See
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e We propose EVOLVE, a hybrid UCL framework with (1) SSL training on the local client and (2)
expert-guided training on the cloud, transmitting a small set of data and intermediate features to
the cloud
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Two Key Designs in EVOLVE see

| " H)-oic Score e [ p?  Dynamic weight e The design of EVOLVE has two key parts
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Expert Aggregation Loss based on HSIC Dynamic weight adjustment based on a

confidence metric
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Experimental Setup SEee
e Datasets: CIFAR-10, TinylmageNet, CORe50 [PMLR’17], Stream-51 [CVPRW’20]
o Data streams: Sequential w/
imbalance classes
11D Sequential (Seq) (Seq-imb)
AT T N
e Baselines: COReS50
o Synaptic Intelligence (SI) [ICML'17] IR T ey “}
e Progressive Neural Network (PNN) [arXiv’'16] (Time >
o Dark Experience Replay (DER) [NeurlPS'20] e , ey
e CaSSLe [CVPR’22] \F’ﬁfﬂﬁﬂﬁ@ﬁ °°° @5
o Lifelong Unsupervised Mixup (LUMP) [ICLR’22] e v’

e Target model: ResNet-18
o Experts: pretrained ResNet-50, Swin Transformer downloaded from torchvision
e Metrics: KNN accuracy, linear evaluation accuracy
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Main Accuracy Results See

e EVOLVE outperforms the top baseline using the same SSL by 3.6-20.0% in kNN
accuracy and 6.1- 53.7% in top-1 linear evaluation accuracy across diverse data

streams
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Conclusion see

« Existing UCL algorithms cannot generalize to real-world scenarios due to
» Unpredictable streaming input
» Lack of supervision and prior knowledge

» We propose a general expert-guided continual learning framework, called EVOLVE, with
local SSL training on clients and expert-guided training on the cloud
« EVOLVE has two key designs
» Expert aggregation loss based on HSIC to distill guidance
» Dynamic weight update to adjust the “power” of diverse experts based on latest data input

« EVOLVE outperforms existing UCL baselines on both image- and video-based
data streams using the same SSL backbone

System Energy Efficiency Lab
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